Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown View Tomography

IF 2.1 3区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE SIAM Journal on Imaging Sciences Pub Date : 2023-08-08 DOI:10.1137/22m1498218
Shuai Huang, Mona Zehni, Ivan Dokmanić, Zhizhen Zhao
{"title":"Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown View Tomography","authors":"Shuai Huang, Mona Zehni, Ivan Dokmanić, Zhizhen Zhao","doi":"10.1137/22m1498218","DOIUrl":null,"url":null,"abstract":"Unknown view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations. A line of work starting with Kam (1980) employs the method of moments with rotation-invariant Fourier features to solve UVT in the frequency domain, assuming that the orientations are uniformly distributed. This line of work includes the recent orthogonal matrix retrieval (OMR) approaches based on matrix factorization, which, while elegant, either require side information about the density that is not available or fail to be sufficiently robust. For OMR to break free from those restrictions, we propose to jointly recover the density map and the orthogonal matrices by requiring that they be mutually consistent. We regularize the resulting nonconvex optimization problem by a denoised reference projection and a nonnegativity constraint. This is enabled by the new closed-form expressions for spatial autocorrelation features. Further, we design an easy-to-compute initial density map which effectively mitigates the nonconvexity of the reconstruction problem. Experimental results show that the proposed OMR with spatial consensus is more robust and performs significantly better than the previous state-of-the-art OMR approach in the typical low signal-to-noise-ratio scenario of 3D UVT.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"15 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1498218","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Unknown view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations. A line of work starting with Kam (1980) employs the method of moments with rotation-invariant Fourier features to solve UVT in the frequency domain, assuming that the orientations are uniformly distributed. This line of work includes the recent orthogonal matrix retrieval (OMR) approaches based on matrix factorization, which, while elegant, either require side information about the density that is not available or fail to be sufficiently robust. For OMR to break free from those restrictions, we propose to jointly recover the density map and the orthogonal matrices by requiring that they be mutually consistent. We regularize the resulting nonconvex optimization problem by a denoised reference projection and a nonnegativity constraint. This is enabled by the new closed-form expressions for spatial autocorrelation features. Further, we design an easy-to-compute initial density map which effectively mitigates the nonconvexity of the reconstruction problem. Experimental results show that the proposed OMR with spatial consensus is more robust and performs significantly better than the previous state-of-the-art OMR approach in the typical low signal-to-noise-ratio scenario of 3D UVT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间一致性的三维未知视图层析成像正交矩阵检索
未知视图层析成像(UVT)从未知随机方向的二维投影重建三维密度图。从Kam(1980)开始的一系列工作采用具有旋转不变傅立叶特征的矩量方法在频域中求解UVT,假设方向均匀分布。这方面的工作包括最近基于矩阵分解的正交矩阵检索(OMR)方法,这种方法虽然很优雅,但要么需要关于密度的不可用的侧信息,要么不够健壮。为了使OMR摆脱这些限制,我们提出通过要求密度图和正交矩阵相互一致来联合恢复它们。我们通过一个去噪的参考投影和一个非负性约束来正则化得到的非凸优化问题。这是由空间自相关特征的新封闭形式表达式实现的。此外,我们设计了一个易于计算的初始密度图,有效地减轻了重建问题的非凸性。实验结果表明,在典型的三维UVT低信噪比场景下,基于空间一致性的OMR方法具有更强的鲁棒性,且性能明显优于现有的OMR方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
3.80
自引率
4.80%
发文量
58
审稿时长
>12 weeks
期刊介绍: SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications. SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.
期刊最新文献
Uniform Recovery Guarantees for Quantized Corrupted Sensing Using Structured or Generative Priors Restoration Guarantee of Image Inpainting via Low Rank Patch Matrix Completion Inclusion and Estimates for the Jumps of Minimizers in Variational Denoising Removing the Mask—Reconstructing a Real-Valued Field on the Sphere from a Masked Field by Spherical Fourier Analysis An Inexact Majorized Proximal Alternating Direction Method of Multipliers for Diffusion Tensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1