{"title":"A Full and Detailed Proof for the Riemann Hypothesis & the Simple Inductive proof of Goldbach’s Conjecture","authors":"Lam Kai Shun","doi":"10.37745/ijmss.13/vol11n3110","DOIUrl":null,"url":null,"abstract":"As in my previous two papers [2] & [3] about the boundary of the prime gap still cause some misunderstanding, I here in this paper tries to clarify those detailed steps in proving such boundary of the prime gap for a contradiction. Indeed, the general idea of my designed proof is to make all of the feasible case of the Riemann Zeta function with exponents ranged from 1 to s = u + v*I becomes nonsense (where u, v are real numbers with I is imaginary equals to (-1)1/2 except that u = 0.5 with some real numbers v as the expected zeta roots. Once if we can exclude all other possibilies unless u = 0.5 with some real numbers v in the Riemann Zeta function’s exponent “s”, then the Riemann Hypothesis will be proved immediately. The truth of the hypothesis further implies that there is a need for the shift from the line x = 0 to the line x = 0.5 as all of the zeta roots lie on it. However, NOT all of the points on x = 0.5 are zeros as we may find from the model equation that has been well established in [2]. One of my application is in the quantum filtering for an elimination of noise in a quantum system but NOT used to filter human beings like the political counter-parts.In general, this author suggests that for all of the proof or disproof to any cases of hypothesis, one may need to point out those logical contradictions [14] among them. Actually, my proposition works very well for the cases in my disproof of Continuum Hypothesis [15] together with the proof in Riemann Hypothesis","PeriodicalId":476297,"journal":{"name":"International journal of mathematics and statistics studies","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of mathematics and statistics studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37745/ijmss.13/vol11n3110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As in my previous two papers [2] & [3] about the boundary of the prime gap still cause some misunderstanding, I here in this paper tries to clarify those detailed steps in proving such boundary of the prime gap for a contradiction. Indeed, the general idea of my designed proof is to make all of the feasible case of the Riemann Zeta function with exponents ranged from 1 to s = u + v*I becomes nonsense (where u, v are real numbers with I is imaginary equals to (-1)1/2 except that u = 0.5 with some real numbers v as the expected zeta roots. Once if we can exclude all other possibilies unless u = 0.5 with some real numbers v in the Riemann Zeta function’s exponent “s”, then the Riemann Hypothesis will be proved immediately. The truth of the hypothesis further implies that there is a need for the shift from the line x = 0 to the line x = 0.5 as all of the zeta roots lie on it. However, NOT all of the points on x = 0.5 are zeros as we may find from the model equation that has been well established in [2]. One of my application is in the quantum filtering for an elimination of noise in a quantum system but NOT used to filter human beings like the political counter-parts.In general, this author suggests that for all of the proof or disproof to any cases of hypothesis, one may need to point out those logical contradictions [14] among them. Actually, my proposition works very well for the cases in my disproof of Continuum Hypothesis [15] together with the proof in Riemann Hypothesis