99%, 15W/cm<sup>3</sup> Capacitively Coupled Modular DCPET for Low-Voltage DC Power Supply Systems

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEEJ Journal of Industry Applications Pub Date : 2023-05-01 DOI:10.1541/ieejjia.22007740
Keigo Arita, Yusuke Hayashi, Kazuto Takao
{"title":"99%, 15W/cm&lt;sup&gt;3&lt;/sup&gt; Capacitively Coupled Modular DCPET for Low-Voltage DC Power Supply Systems","authors":"Keigo Arita, Yusuke Hayashi, Kazuto Takao","doi":"10.1541/ieejjia.22007740","DOIUrl":null,"url":null,"abstract":"A capacitively coupled modular DC-DC power electronic transformer (DCPET) has been proposed. The proposed DCPET consists of capacitively coupled unregulated LLC resonant converter modules; these modules are connected in series-parallel combinations. The capacitive coupling topology is considered to be promising to develop highly efficient high-power-density converter modules, and the series-parallel connection of these modules smoothly achieves various voltage ratios of DCPETs. A trial design for a 48 V-48 V, 450 W capacitively coupled LLC converter module using GaN-FETs has been demonstrated, and the potential to achieve 99%, 15 W/cm3 has been confirmed. Moreover, the 48 V-384 V DCPET using eight 98.8%, 15 W/cm3 converter modules has been demonstrated, and the feasibility of the proposed topology has been verified. The proposed DCPET overcomes the stagnant relationship between the efficiency and the output power density of isolated converters, and the proposed topology contributes to the prevalence of power electronics equipment for the economical use of electric power.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"30 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22007740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A capacitively coupled modular DC-DC power electronic transformer (DCPET) has been proposed. The proposed DCPET consists of capacitively coupled unregulated LLC resonant converter modules; these modules are connected in series-parallel combinations. The capacitive coupling topology is considered to be promising to develop highly efficient high-power-density converter modules, and the series-parallel connection of these modules smoothly achieves various voltage ratios of DCPETs. A trial design for a 48 V-48 V, 450 W capacitively coupled LLC converter module using GaN-FETs has been demonstrated, and the potential to achieve 99%, 15 W/cm3 has been confirmed. Moreover, the 48 V-384 V DCPET using eight 98.8%, 15 W/cm3 converter modules has been demonstrated, and the feasibility of the proposed topology has been verified. The proposed DCPET overcomes the stagnant relationship between the efficiency and the output power density of isolated converters, and the proposed topology contributes to the prevalence of power electronics equipment for the economical use of electric power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
99%, 15 w / cm< sup> 3 & lt; / sup>低压直流电源系统的电容耦合模块化DCPET
提出了一种电容耦合模块化DC-DC电力电子变压器(DCPET)。提出的DCPET由电容耦合无规LLC谐振变换器模块组成;这些模块以串并联方式连接。电容耦合拓扑被认为有望开发出高效的高功率密度变换器模块,并且这些模块的串并联可以顺利实现dcpet的各种电压比。采用gan - fet的48 V-48 V、450 W电容耦合LLC变换器模块的试验设计已被证明,并有可能达到99%,15 W/cm3。此外,还演示了使用8个98.8%,15 W/cm3的转换器模块的48 V-384 V DCPET,并验证了所提出拓扑的可行性。所提出的DCPET克服了孤立变换器的效率和输出功率密度之间的停滞关系,所提出的拓扑结构有助于电力电子设备的普及,以实现电力的经济利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEJ Journal of Industry Applications
IEEJ Journal of Industry Applications ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.80
自引率
17.60%
发文量
71
期刊介绍: IEEJ Journal of Industry Applications: Power Electronics - AC/AC Conversion and DC/DC Conversion, - Power Semiconductor Devices and their Application, - Inverters and Rectifiers, - Power Supply System and its Application, - Power Electronics Modeling, Simulation, Design and Control, - Renewable Electric Energy Conversion    Industrial System - Mechatronics and Robotics, - Industrial Instrumentation and Control, - Sensing, Actuation, Motion Control and Haptics, - Factory Automation and Production Facility Control, - Automobile Technology and ITS Technology, - Information Oriented Industrial System Electrical Machinery and Apparatus - Electric Machines Design, Modeling and Control, - Rotating Motor Drives and Linear Motor Drives, - Electric Vehicles and Hybrid Electric Vehicles, - Electric Railway and Traction Control, - Magnetic Levitation and Magnetic Bearing, - Static Apparatus and Superconductive Application Publishing Ethics of IEEJ Journal of Industry Applications:     Code of Ethics on IEEJ IEEJ Journal of Industry Applications is a peer-reviewed journal of IEEJ (the Institute of Electrical Engineers of Japan). The publication of IEEJ Journal of Industry Applications is an essential building article in the development of a coherent and respected network of knowledge. It is a direct reflection of the quality of the work of the authors and the institutions that support them. IEEJ Journal of Industry Applications has "Peer-reviewed articles support." It is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer and IEEJ (the Institute of Electrical Engineers of Japan).
期刊最新文献
IEEJ Journal of Industry Applications Output Voltage Precise Tracking Control for Boost Converters Based on Noncausal and Nonlinear Feedforward Control IEEJ Journal of Industry Applications Study on Application of Amorphous Metal to New Single-Phase Synchronous Motors Driven at High Frequencies Operation Characteristics of Discontinuous Current Mode for a Dual-Active-Bridge AC-DC Converter with an Active Energy Buffer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1