Tuning the reactivity of TiO2 layer with uniform distribution of Sub-5 nm Fe2O3 particles via in situ voltage-assisted oxidation for robust catalytic reduction

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2024-04-01 DOI:10.1016/j.nanoms.2023.09.007
Nisa Nashrah, Abdelkarim Chaouiki, Wail Al Zoubi, Young Gun Ko
{"title":"Tuning the reactivity of TiO2 layer with uniform distribution of Sub-5 nm Fe2O3 particles via in situ voltage-assisted oxidation for robust catalytic reduction","authors":"Nisa Nashrah,&nbsp;Abdelkarim Chaouiki,&nbsp;Wail Al Zoubi,&nbsp;Young Gun Ko","doi":"10.1016/j.nanoms.2023.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>The trade-off between efficiency and stability has limited the application of TiO<sub>2</sub> as a catalyst due to its poor surface reactivity. Here, we present a modification of a TiO<sub>2</sub> layer with highly stable Sub-5 nm Fe<sub>2</sub>O<sub>3</sub> nanoparticles (NP) by modulating its structure-surface reactivity relationship to attain efficiency-stability balance via a voltage-assisted oxidation approach. <em>In situ</em> simultaneous oxidation of the Ti substrate and Fe precursor using high-energy plasma driven by high voltage resulted in uniform distribution of Fe<sub>2</sub>O<sub>3</sub> NP embedded within porous TiO<sub>2</sub> layer. Comprehensive surface characterizations with density functional theory demonstrated an improved electronic transition in TiO<sub>2</sub> due to the presence of surface defects from reactive oxygen species and possible charge transfer from Ti to Fe; it also unexpectedly increased the active site in the TiO<sub>2</sub> layer due to uncoordinated electrons in Sub-5 nm Fe<sub>2</sub>O<sub>3</sub> NP/TiO<sub>2</sub> catalyst, thereby enhancing the adsorption of chemical functional groups on the catalyst. This unique embedded structure exhibited remarkable improvement in reducing 4-nitrophenol to 4-aminophenol, achieving approximately 99% efficiency in 20 ​min without stability decay after 20 consecutive cycles, outperforming previously reported TiO<sub>2</sub>-based catalysts. This finding proposes a modified-electrochemical strategy enabling facile construction of TiO<sub>2</sub> with nanoscale oxides extandable to other metal oxide systems.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000612/pdfft?md5=56abc247fe57e2ceb0e1e216f51b0709&pid=1-s2.0-S2589965123000612-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000612","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The trade-off between efficiency and stability has limited the application of TiO2 as a catalyst due to its poor surface reactivity. Here, we present a modification of a TiO2 layer with highly stable Sub-5 nm Fe2O3 nanoparticles (NP) by modulating its structure-surface reactivity relationship to attain efficiency-stability balance via a voltage-assisted oxidation approach. In situ simultaneous oxidation of the Ti substrate and Fe precursor using high-energy plasma driven by high voltage resulted in uniform distribution of Fe2O3 NP embedded within porous TiO2 layer. Comprehensive surface characterizations with density functional theory demonstrated an improved electronic transition in TiO2 due to the presence of surface defects from reactive oxygen species and possible charge transfer from Ti to Fe; it also unexpectedly increased the active site in the TiO2 layer due to uncoordinated electrons in Sub-5 nm Fe2O3 NP/TiO2 catalyst, thereby enhancing the adsorption of chemical functional groups on the catalyst. This unique embedded structure exhibited remarkable improvement in reducing 4-nitrophenol to 4-aminophenol, achieving approximately 99% efficiency in 20 ​min without stability decay after 20 consecutive cycles, outperforming previously reported TiO2-based catalysts. This finding proposes a modified-electrochemical strategy enabling facile construction of TiO2 with nanoscale oxides extandable to other metal oxide systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过原位电压辅助氧化技术调节带有均匀分布的亚 5 纳米 Fe2O3 粒子的二氧化钛层的反应活性,以实现稳健的催化还原作用
由于二氧化钛的表面活性较差,效率和稳定性之间的权衡限制了二氧化钛作为催化剂的应用。在这里,我们介绍了一种用高度稳定的亚 5 纳米 Fe2O3 纳米粒子(NP)修饰 TiO2 层的方法,通过电压辅助氧化法调节其结构与表面反应活性的关系,从而达到效率与稳定性的平衡。利用高压驱动的高能等离子体对钛基底和铁前驱体进行原位同步氧化,使嵌入多孔二氧化钛层中的 Fe2O3 NP 呈均匀分布。利用密度泛函理论进行的全面表面特性分析表明,由于活性氧造成的表面缺陷以及可能存在的从 Ti 到 Fe 的电荷转移,TiO2 的电子转变得到了改善;此外,由于 Sub-5 nm Fe2O3 NP/TiO2 催化剂中的非配位电子,TiO2 层中的活性位点意外增加,从而增强了催化剂对化学官能团的吸附。这种独特的嵌入式结构在将 4-硝基苯酚还原为 4-氨基苯酚方面表现出了显著的改进,20 分钟内的还原效率约为 99%,并且在连续 20 个循环后没有出现稳定性衰减,优于之前报道的基于 TiO2 的催化剂。这一发现提出了一种改良的电化学策略,可以方便地构建具有纳米级氧化物的二氧化钛,并可扩展到其他金属氧化物体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Defect-induced synthesis of nanoscale hierarchically porous metal-organic frameworks with tunable porosity for enhanced volatile organic compound adsorption Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis A nano-sheet graphene-based enhanced thermal radiation composite for passive heat dissipation from vehicle batteries Gradient honeycomb metastructure with broadband microwave absorption and effective mechanical resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1