{"title":"Blocking mechanisms of batrachotoxin-activated Na channels in artificial bilayers.","authors":"A Uehara, E Moczydlowski","doi":"10.3109/09687688609065446","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of various pharmacological agents that block single batrachotoxin-activated Na channels from rat muscle can be described in terms of three modes of action that correspond to at least three different binding sites. Guanidinium toxins such as tetrodotoxin, saxitoxin, and a novel polypeptide, mu-conotoxin GIIIA, act only from the extra-cellular side and induce discrete blocked states that correspond to residence times of individual toxin molecules. Such toxins apparently do not deeply penetrate the channel pore since the voltage dependence of block is insensitive to toxin charge and block is not relieved by internal Na+. Many nonspecific organic cations, including charged anesthetics, exhibit a voltage-dependent block that is enhanced by depolarization when present on the inside of the channel. This site is probably within the pore, but binding to this site is weak, as indicated by fast blockade that often appears as lowered channel conductance. A separate class of neutral and tertiary amine anesthetics such as benzocaine and procaine induce discrete closed states when added to either side of the membrane. This blocking effect can be explained by preferential binding to closed states of the channel and appears to be due to a modulation of channel gating.</p>","PeriodicalId":18448,"journal":{"name":"Membrane biochemistry","volume":"6 2","pages":"111-47"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687688609065446","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687688609065446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The effects of various pharmacological agents that block single batrachotoxin-activated Na channels from rat muscle can be described in terms of three modes of action that correspond to at least three different binding sites. Guanidinium toxins such as tetrodotoxin, saxitoxin, and a novel polypeptide, mu-conotoxin GIIIA, act only from the extra-cellular side and induce discrete blocked states that correspond to residence times of individual toxin molecules. Such toxins apparently do not deeply penetrate the channel pore since the voltage dependence of block is insensitive to toxin charge and block is not relieved by internal Na+. Many nonspecific organic cations, including charged anesthetics, exhibit a voltage-dependent block that is enhanced by depolarization when present on the inside of the channel. This site is probably within the pore, but binding to this site is weak, as indicated by fast blockade that often appears as lowered channel conductance. A separate class of neutral and tertiary amine anesthetics such as benzocaine and procaine induce discrete closed states when added to either side of the membrane. This blocking effect can be explained by preferential binding to closed states of the channel and appears to be due to a modulation of channel gating.