Weijun Zhu, Yunan Wu, Zhenye Sun, Wenzhong Shen, Guangxing Guo, Jianwei Lin
{"title":"A method of convolutional neural network based on frequency segmentation for monitoring the state of wind turbine blades","authors":"Weijun Zhu, Yunan Wu, Zhenye Sun, Wenzhong Shen, Guangxing Guo, Jianwei Lin","doi":"10.1016/j.taml.2023.100479","DOIUrl":null,"url":null,"abstract":"<div><p>Wind turbine blades are prone to failure due to high tip speed, rain, dust and so on. A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed. On the experimental measurement data, variational mode decomposition filtering and Mel spectrogram drawing are conducted first. The Mel spectrogram is divided into two halves based on frequency characteristics and then sent into the convolutional neural network. Gaussian white noise is superimposed on the original signal and the output results are assessed based on score coefficients, considering the complexity of the real environment. The surfaces of Wind turbine blades are classified into four types: standard, attachments, polishing, and serrated trailing edge. The proposed method is evaluated and the detection accuracy in complicated background conditions is found to be 99.59%. In addition to support the differentiation of trained models, utilizing proper score coefficients also permit the screening of unknown types.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000508/pdfft?md5=49f235d2825c62d403a3e3aa9917f8b2&pid=1-s2.0-S2095034923000508-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000508","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Wind turbine blades are prone to failure due to high tip speed, rain, dust and so on. A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed. On the experimental measurement data, variational mode decomposition filtering and Mel spectrogram drawing are conducted first. The Mel spectrogram is divided into two halves based on frequency characteristics and then sent into the convolutional neural network. Gaussian white noise is superimposed on the original signal and the output results are assessed based on score coefficients, considering the complexity of the real environment. The surfaces of Wind turbine blades are classified into four types: standard, attachments, polishing, and serrated trailing edge. The proposed method is evaluated and the detection accuracy in complicated background conditions is found to be 99.59%. In addition to support the differentiation of trained models, utilizing proper score coefficients also permit the screening of unknown types.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).