{"title":"Rotating Vector Model and Radius-to-frequency Mapping in the Presence of a Multipole Magnetic Field","authors":"J. L. Qiu, H. Tong, H. G. Wang","doi":"10.3847/1538-4357/ad003f","DOIUrl":null,"url":null,"abstract":"Abstract The rotating vector model and radius-to-frequency mapping in the presence of a multipole magnetic field in pulsars and magnetars are considered. An axisymmetric potential field is assumed, and the following is found: (1) The radiation beam in the case of a multipole field is wider than the dipole case. This may account for the increasing pulse width at the higher frequency of pulsars (anti-radius-to-frequency mapping); (2) The expression for the polarization position angle is unchanged. Only the inclination angle α and phase constant ϕ 0 will change. The angle between the rotational axis and line of sight and the position angle constant ψ 0 will not change. When fitting the varying position angle of magnetars, these constraints should be considered. The appearance and disappearance of a multipole field may account for the changing slope of the position angle in the radio-emitting magnetar Swift J1818.0–1607. A similar but more active process in magnetar magnetospheres may account for the diverse position angle in fast radio bursts.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad003f","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The rotating vector model and radius-to-frequency mapping in the presence of a multipole magnetic field in pulsars and magnetars are considered. An axisymmetric potential field is assumed, and the following is found: (1) The radiation beam in the case of a multipole field is wider than the dipole case. This may account for the increasing pulse width at the higher frequency of pulsars (anti-radius-to-frequency mapping); (2) The expression for the polarization position angle is unchanged. Only the inclination angle α and phase constant ϕ 0 will change. The angle between the rotational axis and line of sight and the position angle constant ψ 0 will not change. When fitting the varying position angle of magnetars, these constraints should be considered. The appearance and disappearance of a multipole field may account for the changing slope of the position angle in the radio-emitting magnetar Swift J1818.0–1607. A similar but more active process in magnetar magnetospheres may account for the diverse position angle in fast radio bursts.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.