Chien-Chou Chen, Wen-Hwa Wu, Yi-Pei Ko, Gwolong Lai
{"title":"Extensive Field Validations and Corresponding Numerical Investigations for a Cable Tension Estimation Method Based on Local Vibration Measurements","authors":"Chien-Chou Chen, Wen-Hwa Wu, Yi-Pei Ko, Gwolong Lai","doi":"10.1155/2023/9691363","DOIUrl":null,"url":null,"abstract":"To assess the applicability of the tension estimation method using local vibration measurements in a thorough manner, this research work is devoted to systematically investigate the appropriate covering ranges of measurements for different cables. Four cables of three cable-stayed bridges are deliberately chosen to cover a wide range of the cable slenderness parameter. Numerical analyses with finite element models and field validations with real measurements are conducted for these stay cables to demonstrate that the covering range of local measurements can be undoubtedly reduced with the increase of cable slenderness. For a relatively short cable with the slenderness parameter at the order of 4000, the adoption of 1/3 coverage is sufficient to keep a high-level accuracy with at most 1% of error. Besides, 1/4, 1/6, and 1/7 coverages are found adequate to maintain the same level of accuracy for longer cables with the slenderness parameter at the orders of 30000, 55000, and 80000, respectively. With the solid validations presented in the current study, the covering range of the cable for this simplified method employing local vibration measurements can be confidently reduced to greatly alleviate the expense and hard work of sensor installation near the high end.","PeriodicalId":48981,"journal":{"name":"Structural Control & Health Monitoring","volume":"13 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9691363","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To assess the applicability of the tension estimation method using local vibration measurements in a thorough manner, this research work is devoted to systematically investigate the appropriate covering ranges of measurements for different cables. Four cables of three cable-stayed bridges are deliberately chosen to cover a wide range of the cable slenderness parameter. Numerical analyses with finite element models and field validations with real measurements are conducted for these stay cables to demonstrate that the covering range of local measurements can be undoubtedly reduced with the increase of cable slenderness. For a relatively short cable with the slenderness parameter at the order of 4000, the adoption of 1/3 coverage is sufficient to keep a high-level accuracy with at most 1% of error. Besides, 1/4, 1/6, and 1/7 coverages are found adequate to maintain the same level of accuracy for longer cables with the slenderness parameter at the orders of 30000, 55000, and 80000, respectively. With the solid validations presented in the current study, the covering range of the cable for this simplified method employing local vibration measurements can be confidently reduced to greatly alleviate the expense and hard work of sensor installation near the high end.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.