Closed form Expressions of Shear Correction Factor for Functionally Graded Beams

IF 2.6 4区 工程技术 Q2 MECHANICS Journal of Applied Mechanics-Transactions of the Asme Pub Date : 2023-10-31 DOI:10.1115/1.4063817
None Amandeep, Anup Kumar Pathak, Srikant Sekhar Padhee
{"title":"Closed form Expressions of Shear Correction Factor for Functionally Graded Beams","authors":"None Amandeep, Anup Kumar Pathak, Srikant Sekhar Padhee","doi":"10.1115/1.4063817","DOIUrl":null,"url":null,"abstract":"Abstract In this work, closed-form expressions of shear correction factor (SCF) have been derived for beams with functionally graded material (FGM), through variational asymptotic method (VAM). An energy equivalence approach has been adopted between VAM and Timoshenko model, for estimating the SCF. A planar FGM beam has been considered and the calculation for SCF has been carried out. The formulation has been derived in a functional form that permits solutions for a large class of gradation models of FGM. In the limiting case when the material becomes homogeneous the estimated SCF matches exactly with that of the literature, thus validating the solution. A detailed discussion has been carried out on the results and conclusions have been drawn.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063817","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this work, closed-form expressions of shear correction factor (SCF) have been derived for beams with functionally graded material (FGM), through variational asymptotic method (VAM). An energy equivalence approach has been adopted between VAM and Timoshenko model, for estimating the SCF. A planar FGM beam has been considered and the calculation for SCF has been carried out. The formulation has been derived in a functional form that permits solutions for a large class of gradation models of FGM. In the limiting case when the material becomes homogeneous the estimated SCF matches exactly with that of the literature, thus validating the solution. A detailed discussion has been carried out on the results and conclusions have been drawn.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能梯度梁剪切修正系数的封闭表达式
摘要本文通过变分渐近方法(VAM)推导了功能梯度材料(FGM)梁的剪切修正系数(SCF)的封闭表达式。在VAM模型和Timoshenko模型之间采用能量等效的方法来估计SCF。考虑了平面FGM梁,并进行了SCF的计算。该公式以函数形式推导出来,允许求解一类大的女性生殖器切割的梯度模型。在材料变得均匀的极限情况下,估计的SCF与文献的SCF完全匹配,从而验证了解。对研究结果进行了详细的讨论,并得出了结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
3.80%
发文量
95
审稿时长
5.8 months
期刊介绍: All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation
期刊最新文献
Improved Ballistic Impact Resistance of Nanofibrillar Cellulose Films with Discontinuous Fibrous Bouligand Architecture. FAST OPTIMAL DESIGN OF SHELL-GRADED-INFILL STRUCTURES WITH EXPLICIT BOUNDARY BY A HYBRID MMC-AABH PLUS APPROACH The role of frequency and impedance contrasts in bandgap closing and formation patterns of axially-vibrating phononic crystals Head Injuries Induced by Tennis Ball Impacts: A Computational Study Experimental Validation of Reconstructed Microstructure via Deep Learning in Discontinuous Fiber Platelet Composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1