{"title":"Recent advances in steroidal glycoalkaloid biosynthesis in the genus <i>Solanum</i>","authors":"Ryota Akiyama, Naoyuki Umemoto, Masaharu Mizutani","doi":"10.5511/plantbiotechnology.23.0717b","DOIUrl":null,"url":null,"abstract":"Steroidal glycoalkaloids (SGAs) are specialized metabolites found in members of Solanum species, and are also known as toxic substances in Solanum food crops such as tomato (Solanum lycopersicum), potato (Solanum tuberosum), and eggplant (Solanum melongena). SGA biosynthesis can be divided into two main parts: formation of steroidal aglycones, which are derived from cholesterol, and glycosylation at the C-3 hydroxy group. This review focuses on recent studies that shed light on the complete process of the aglycone formation in SGA biosynthesis and structural diversification of SGAs by duplicated dioxygenases, as well as the development of non-toxic potatoes through genome editing using these findings.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.23.0717b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites found in members of Solanum species, and are also known as toxic substances in Solanum food crops such as tomato (Solanum lycopersicum), potato (Solanum tuberosum), and eggplant (Solanum melongena). SGA biosynthesis can be divided into two main parts: formation of steroidal aglycones, which are derived from cholesterol, and glycosylation at the C-3 hydroxy group. This review focuses on recent studies that shed light on the complete process of the aglycone formation in SGA biosynthesis and structural diversification of SGAs by duplicated dioxygenases, as well as the development of non-toxic potatoes through genome editing using these findings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.