{"title":"A study to forecast healthcare capacity dynamics in the wake of the COVID-19 pandemic","authors":"Anchal Patil, Vipulesh Shardeo, Jitender Madaan, Ashish Dwivedi, Sanjoy Kumar Paul","doi":"10.1108/ijpdlm-10-2022-0305","DOIUrl":null,"url":null,"abstract":"Purpose This study aims to evaluate the dynamics between healthcare resource capacity expansion and disease spread. Further, the study estimates the resources required to respond to a pandemic appropriately. Design/methodology/approach This study adopts a system dynamics simulation and scenario analysis to experiment with the modification of the susceptible exposed infected and recovered (SEIR) model. The experiments evaluate diagnostic capacity expansion to identify suitable expansion plans and timelines. Afterwards, two popularly used forecasting tools, artificial neural network (ANN) and auto-regressive integrated moving average (ARIMA), are used to estimate the requirement of beds for a period when infection data became available. Findings The results from the study reflect that aggressive testing with isolation and integration of quarantine can be effective strategies to prevent disease outbreaks. The findings demonstrate that decision-makers must rapidly expand the diagnostic capacity during the first two weeks of the outbreak to support aggressive testing and isolation. Further, results confirm a healthcare resource deficit of at least two months for Delhi in the absence of these strategies. Also, the study findings highlight the importance of capacity expansion timelines by simulating a range of contact rates and disease infectivity in the early phase of the outbreak when various parameters are unknown. Further, it has been reflected that forecasting tools can effectively estimate healthcare resource requirements when pandemic data is available. Practical implications The models developed in the present study can be utilised by policymakers to suitably design the response plan. The decisions regarding how much diagnostics capacity is needed and when to expand capacity to minimise infection spread have been demonstrated for Delhi city. Also, the study proposed a decision support system (DSS) to assist the decision-maker in short- and long-term planning during the disease outbreak. Originality/value The study estimated the resources required for adopting an aggressive testing strategy. Several experiments were performed to successfully validate the robustness of the simulation model. The modification of SEIR model with diagnostic capacity increment, quarantine and testing block has been attempted to provide a distinct perspective on the testing strategy. The prevention of outbreaks has been addressed systematically.","PeriodicalId":14251,"journal":{"name":"International Journal of Physical Distribution & Logistics Management","volume":"43 1","pages":"0"},"PeriodicalIF":5.9000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Distribution & Logistics Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpdlm-10-2022-0305","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose This study aims to evaluate the dynamics between healthcare resource capacity expansion and disease spread. Further, the study estimates the resources required to respond to a pandemic appropriately. Design/methodology/approach This study adopts a system dynamics simulation and scenario analysis to experiment with the modification of the susceptible exposed infected and recovered (SEIR) model. The experiments evaluate diagnostic capacity expansion to identify suitable expansion plans and timelines. Afterwards, two popularly used forecasting tools, artificial neural network (ANN) and auto-regressive integrated moving average (ARIMA), are used to estimate the requirement of beds for a period when infection data became available. Findings The results from the study reflect that aggressive testing with isolation and integration of quarantine can be effective strategies to prevent disease outbreaks. The findings demonstrate that decision-makers must rapidly expand the diagnostic capacity during the first two weeks of the outbreak to support aggressive testing and isolation. Further, results confirm a healthcare resource deficit of at least two months for Delhi in the absence of these strategies. Also, the study findings highlight the importance of capacity expansion timelines by simulating a range of contact rates and disease infectivity in the early phase of the outbreak when various parameters are unknown. Further, it has been reflected that forecasting tools can effectively estimate healthcare resource requirements when pandemic data is available. Practical implications The models developed in the present study can be utilised by policymakers to suitably design the response plan. The decisions regarding how much diagnostics capacity is needed and when to expand capacity to minimise infection spread have been demonstrated for Delhi city. Also, the study proposed a decision support system (DSS) to assist the decision-maker in short- and long-term planning during the disease outbreak. Originality/value The study estimated the resources required for adopting an aggressive testing strategy. Several experiments were performed to successfully validate the robustness of the simulation model. The modification of SEIR model with diagnostic capacity increment, quarantine and testing block has been attempted to provide a distinct perspective on the testing strategy. The prevention of outbreaks has been addressed systematically.
期刊介绍:
IJPDLM seeks strategically focused, theoretically grounded, empirical and conceptual, quantitative and qualitative, rigorous and relevant, original research studies in logistics, physical distribution and supply chain management operations and associated strategic issues. Quantitatively oriented mathematical and modelling research papers are not suitable for IJPDLM. Desired topics include, but are not limited to: Customer service strategy Omni-channel and multi-channel distribution innovations Order processing and inventory management Implementation of supply chain processes Information and communication technology Sourcing and procurement Risk management and security Personnel recruitment and training Sustainability and environmental Collaboration and integration Global supply chain management and network complexity Information and knowledge management Legal, financial and public policy Retailing, channels and business-to-business management Organizational and human resource development Logistics and SCM education.