Behzad Kadkhodaeielyaderani, Joshua L. Leibowitz, Yejin Moon, Stephen Stachnik, Morcos Awad, Grace Sarkar, Anna E. Shaw, Shelby Stewart, Melissa Culligan, Joseph S. Friedberg, Jin-Oh Hahn, Hosam Fathy
{"title":"Modeling the Impact of Abdominal Pressure on Hypoxia in Laboratory Swine","authors":"Behzad Kadkhodaeielyaderani, Joshua L. Leibowitz, Yejin Moon, Stephen Stachnik, Morcos Awad, Grace Sarkar, Anna E. Shaw, Shelby Stewart, Melissa Culligan, Joseph S. Friedberg, Jin-Oh Hahn, Hosam Fathy","doi":"10.1115/1.4063478","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents an experimentally parameterized model of the dynamics of oxygen transport in a laboratory animal that simultaneously experiences: (i) a reduction in inspired oxygen plus (ii) an increase in intra-abdominal pressure. The goal is to model the potential impact of elevated intra-abdominal pressure on oxygen transport dynamics. The model contains three compartments, namely, the animal’s lungs, lower body vasculature, and upper body vasculature. The model assumes that intra-abdominal pressure affects the split of cardiac output among the two vasculature compartments and that aerobic metabolism in each compartment diminishes with severe hypoxia. Fitting this model to a laboratory experiment on an adult male Yorkshire swine using a regularized nonlinear least-squares approach furnishes both physiologically plausible parameter values plus a reasonable quality of fit.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper presents an experimentally parameterized model of the dynamics of oxygen transport in a laboratory animal that simultaneously experiences: (i) a reduction in inspired oxygen plus (ii) an increase in intra-abdominal pressure. The goal is to model the potential impact of elevated intra-abdominal pressure on oxygen transport dynamics. The model contains three compartments, namely, the animal’s lungs, lower body vasculature, and upper body vasculature. The model assumes that intra-abdominal pressure affects the split of cardiac output among the two vasculature compartments and that aerobic metabolism in each compartment diminishes with severe hypoxia. Fitting this model to a laboratory experiment on an adult male Yorkshire swine using a regularized nonlinear least-squares approach furnishes both physiologically plausible parameter values plus a reasonable quality of fit.