Aswath Govindraju, Andrew Cornelius, Zongxuan Sun, Kenneth Kim, Chol-Bum M. Kweon
{"title":"Rate Limited and Energy efficient Feedforward control for multi-fuel UAS engine","authors":"Aswath Govindraju, Andrew Cornelius, Zongxuan Sun, Kenneth Kim, Chol-Bum M. Kweon","doi":"10.1115/1.4063476","DOIUrl":null,"url":null,"abstract":"Abstract Surrogate-model or data-driven model-based control frameworks are becoming increasingly popular in recent years due to their ease of model development and enhanced computational power, making them suitable for real-time use. However, when it comes to modeling aspects related to time, difficulties arise as many of the models deal with quasi-static systems. In this paper, we propose a method to model time-dependent actuator constraints in a surrogate-model-based control framework for controlling the combustion phasing in a multi-fuel UAS engine. Along with this, a conducive method for designing an energy-efficient ignition assistant control is discussed. The developed methods are then tested on a diesel engine, and the results show a more robust and energy-efficient combustion phasing control as the fuel property varies in real-time.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"479 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Surrogate-model or data-driven model-based control frameworks are becoming increasingly popular in recent years due to their ease of model development and enhanced computational power, making them suitable for real-time use. However, when it comes to modeling aspects related to time, difficulties arise as many of the models deal with quasi-static systems. In this paper, we propose a method to model time-dependent actuator constraints in a surrogate-model-based control framework for controlling the combustion phasing in a multi-fuel UAS engine. Along with this, a conducive method for designing an energy-efficient ignition assistant control is discussed. The developed methods are then tested on a diesel engine, and the results show a more robust and energy-efficient combustion phasing control as the fuel property varies in real-time.