{"title":"Effect of walnut-shell filler as sustainable material with silane to replace carbon black in natural rubber-based tire tread compound","authors":"Narendra Singh Chundawat, Bhavani Shanker Parmar, Panneerselvam Perumal, Sapana Jadoun, Dilip Vaidya, Narendra Pal Singh Chauhan","doi":"10.1007/s42464-023-00226-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, walnut shell filler of 75–150 µm and 45–75 µm size was used in rubber compound with different loadings (2,3, and 5 phr). At 2, 3, and 5 phr loading, small-size WNS powder (45–75 µm) has higher modulus at 300%, tensile strength and elongation at break than larger-size powder (75–150 µm); however, modulus at 300% is lower than blank compound. As the amount of WNS filler increases, the elongation at break with modulus at 300% and tensile strength decrease. The goal of using silane is to improve the interfacial interaction between WNS filler and the rubber matrix. Larger-size WNS filler using Si69 compound demonstrated higher modulus at 300% with higher elongation at break and tensile strength compared to non-silanised compound; however, modulus at 300% remained lower than blank compound. The silanised compound with both WNS fillers demonstrated slightly higher rebound resilience at 100 °C, slightly lower heat build-up, and slightly lower tan delta at 60 °C than the blank compound. It was demonstrated that small-size WNS filler with silane could partially replace N330 carbon black (3 phr) in natural rubber-based tire tread compound due to its bio-based, biodegradable, renewable and sustainable properties.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"26 5","pages":"425 - 439"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-023-00226-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, walnut shell filler of 75–150 µm and 45–75 µm size was used in rubber compound with different loadings (2,3, and 5 phr). At 2, 3, and 5 phr loading, small-size WNS powder (45–75 µm) has higher modulus at 300%, tensile strength and elongation at break than larger-size powder (75–150 µm); however, modulus at 300% is lower than blank compound. As the amount of WNS filler increases, the elongation at break with modulus at 300% and tensile strength decrease. The goal of using silane is to improve the interfacial interaction between WNS filler and the rubber matrix. Larger-size WNS filler using Si69 compound demonstrated higher modulus at 300% with higher elongation at break and tensile strength compared to non-silanised compound; however, modulus at 300% remained lower than blank compound. The silanised compound with both WNS fillers demonstrated slightly higher rebound resilience at 100 °C, slightly lower heat build-up, and slightly lower tan delta at 60 °C than the blank compound. It was demonstrated that small-size WNS filler with silane could partially replace N330 carbon black (3 phr) in natural rubber-based tire tread compound due to its bio-based, biodegradable, renewable and sustainable properties.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.