{"title":"Accounting for forest fire risks: global insights for climate change mitigation","authors":"Long Chu, R. Quentin Grafton, Harry Nelson","doi":"10.1007/s11027-023-10087-0","DOIUrl":null,"url":null,"abstract":"Abstract Fire is an important risk in global forest loss and contributed 20% to 25% of the global anthropogenic greenhouse gas emissions between 1997 and 2016. Forest fire risks will increase with climate change in some locations, but existing estimates of the costs of using forests for climate mitigation do not yet fully account for these risks or how these risks change inter-temporally. To quantify the importance of forest fire risks, we undertook a global study of individual country fire risks, combining economic datasets and global remote sensing data from 2001 to 2020. Our estimates of forest fire risk premia better account for the risk of forest burning that would be additional to the risk-free and break-even price of credits or offsets to promote carbon sequestration and storage in forests. Our results show the following: (1) forest fire risk premia can be much larger than the historical forest area burned; (2) for some countries, forest fire risk premia have a large impact on the relative country-level break-even price of carbon credits or offsets; (3) a large spatial and inter-temporal heterogeneity of forest fires across countries between 2001 and 2020; and (4) the importance of properly incorporating forest fire risk premia into carbon credits/offset programs. As part of our analysis, and to emphasise the possible sub-national scale differences, our results highlight the heterogeneity in fire risk premia across 10 Canadian provinces.","PeriodicalId":54387,"journal":{"name":"Mitigation and Adaptation Strategies for Global Change","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitigation and Adaptation Strategies for Global Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11027-023-10087-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Fire is an important risk in global forest loss and contributed 20% to 25% of the global anthropogenic greenhouse gas emissions between 1997 and 2016. Forest fire risks will increase with climate change in some locations, but existing estimates of the costs of using forests for climate mitigation do not yet fully account for these risks or how these risks change inter-temporally. To quantify the importance of forest fire risks, we undertook a global study of individual country fire risks, combining economic datasets and global remote sensing data from 2001 to 2020. Our estimates of forest fire risk premia better account for the risk of forest burning that would be additional to the risk-free and break-even price of credits or offsets to promote carbon sequestration and storage in forests. Our results show the following: (1) forest fire risk premia can be much larger than the historical forest area burned; (2) for some countries, forest fire risk premia have a large impact on the relative country-level break-even price of carbon credits or offsets; (3) a large spatial and inter-temporal heterogeneity of forest fires across countries between 2001 and 2020; and (4) the importance of properly incorporating forest fire risk premia into carbon credits/offset programs. As part of our analysis, and to emphasise the possible sub-national scale differences, our results highlight the heterogeneity in fire risk premia across 10 Canadian provinces.
期刊介绍:
The Earth''s biosphere is being transformed by various anthropogenic activities. Mitigation and Adaptation Strategies for Global Change addresses a wide range of environment, economic and energy topics and timely issues including global climate change, stratospheric ozone depletion, acid deposition, eutrophication of terrestrial and aquatic ecosystems, species extinction and loss of biological diversity, deforestation and forest degradation, desertification, soil resource degradation, land-use change, sea level rise, destruction of coastal zones, depletion of fresh water and marine fisheries, loss of wetlands and riparian zones and hazardous waste management.
Response options to mitigate these threats or to adapt to changing environs are needed to ensure a sustainable biosphere for all forms of life. To that end, Mitigation and Adaptation Strategies for Global Change provides a forum to encourage the conceptualization, critical examination and debate regarding response options. The aim of this journal is to provide a forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales. One of the primary goals of this journal is to contribute to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated.