Alexandros N. Nordas, Alice Brauchart, Maria Anthi, Georgios Anagnostou
{"title":"Calibration Method and Material Constants of an Anisotropic, Linearly Elastic and Perfectly Plastic Mohr–Coulomb Constitutive Model for Opalinus Clay","authors":"Alexandros N. Nordas, Alice Brauchart, Maria Anthi, Georgios Anagnostou","doi":"10.1007/s00603-023-03509-7","DOIUrl":null,"url":null,"abstract":"Abstract Nagra, the cooperative for developing and implementing a long-term radioactive waste depository in Switzerland, identified Opalinus Clay as the most suitable host rock for deep geological containment. This paper deals with those features of Opalinus Clay that are important for the design and construction of the underground structures. Consolidated drained (CD) and consolidated undrained (CU) triaxial compression tests on specimens from deep boreholes revealed that Opalinus Clay exhibits pronounced stiffness and strength anisotropy, dependency of stiffness on the initial confining pressure, slightly non-linear pre-failure stress–strain behaviour, and a drop in axial resistance after a certain amount of shearing. Within the scope of establishing a rigorous—yet practical—design approach for the repository tunnels and caverns, the simplest possible constitutive model capable of reproducing the main aspects of the Opalinus Clay behaviour is adopted. The non-associated linear elastic and perfectly plastic MC model is chosen as a starting point, on account of its wide use in tunnel engineering practice, its simplicity, and the clear physical meaning of its parameters. This paper presents a systematic and robust calibration method for an extended version of this model, which considers the pronounced strength and stiffness anisotropy of Opalinus Clay. The paper additionally provides the full suite of the equations that describe the model behaviour under triaxial CU or CD testing conditions and for any bedding orientation relative to the specimen axis. The equations are employed to determine ranges of material constants for two varieties of Opalinus Clay, based upon the results of 73 CU and CD tests. A thorough comparison between the model predictions and the experimental response is conducted, to demonstrate the versatility and limitations of the constitutive model and of the proposed calibration approach.","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"5 5","pages":"0"},"PeriodicalIF":5.5000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rock Mechanics and Rock Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00603-023-03509-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Nagra, the cooperative for developing and implementing a long-term radioactive waste depository in Switzerland, identified Opalinus Clay as the most suitable host rock for deep geological containment. This paper deals with those features of Opalinus Clay that are important for the design and construction of the underground structures. Consolidated drained (CD) and consolidated undrained (CU) triaxial compression tests on specimens from deep boreholes revealed that Opalinus Clay exhibits pronounced stiffness and strength anisotropy, dependency of stiffness on the initial confining pressure, slightly non-linear pre-failure stress–strain behaviour, and a drop in axial resistance after a certain amount of shearing. Within the scope of establishing a rigorous—yet practical—design approach for the repository tunnels and caverns, the simplest possible constitutive model capable of reproducing the main aspects of the Opalinus Clay behaviour is adopted. The non-associated linear elastic and perfectly plastic MC model is chosen as a starting point, on account of its wide use in tunnel engineering practice, its simplicity, and the clear physical meaning of its parameters. This paper presents a systematic and robust calibration method for an extended version of this model, which considers the pronounced strength and stiffness anisotropy of Opalinus Clay. The paper additionally provides the full suite of the equations that describe the model behaviour under triaxial CU or CD testing conditions and for any bedding orientation relative to the specimen axis. The equations are employed to determine ranges of material constants for two varieties of Opalinus Clay, based upon the results of 73 CU and CD tests. A thorough comparison between the model predictions and the experimental response is conducted, to demonstrate the versatility and limitations of the constitutive model and of the proposed calibration approach.
期刊介绍:
Rock Mechanics and Rock Engineering covers the experimental and theoretical aspects of rock mechanics, including laboratory and field testing, methods of computation and field observation of structural behavior. The journal maintains the strong link between engineering geology and rock engineering, providing a bridge between fundamental developments and practical application. Coverage includes case histories on design and construction of structures in rock such as underground openings, large dam foundations and rock slopes.
Fields of interest include rock mechanics in all its varied aspects including laboratory testing, field investigations, computational methods and design principles. The journal also reports on applications in tunneling, rock slopes, large dam foundations, mining, engineering and engineering geology.