{"title":"Drone network for early warning of forest fire and dynamic fire quenching plan generation","authors":"S. Manoj, C. Valliyammai","doi":"10.1186/s13638-023-02320-w","DOIUrl":null,"url":null,"abstract":"Abstract Wildfires are one of the most frequent natural disasters which significantly harm the environment, society, and the economy. Transfer learning algorithms and modern machine learning tools can help in early forest fire prediction, detection, and dynamic fire quenching. A group of drones that has high-definition image processing and decision-making capabilities are used to detect the forest fires in the very early stage. The proposed system generates a fire quenching plan using particle swarm optimization technique and alerts the fire and rescue department for a quick action, thereby stop the forest fire at an early stage. Also, the drone network plays a major role to track the live status of forest fire and quenches the fire. ResNet, VGGNet, MobileNet, AlexNet, and GoogLeNet are used to detect the forest fire hazards. The experimental results prove that the proposed technique GoogLeNet-TL provides 96% accuracy and 97% F1 score in comparison with the state-of-the-art deep learning models.","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"15 4","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13638-023-02320-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Wildfires are one of the most frequent natural disasters which significantly harm the environment, society, and the economy. Transfer learning algorithms and modern machine learning tools can help in early forest fire prediction, detection, and dynamic fire quenching. A group of drones that has high-definition image processing and decision-making capabilities are used to detect the forest fires in the very early stage. The proposed system generates a fire quenching plan using particle swarm optimization technique and alerts the fire and rescue department for a quick action, thereby stop the forest fire at an early stage. Also, the drone network plays a major role to track the live status of forest fire and quenches the fire. ResNet, VGGNet, MobileNet, AlexNet, and GoogLeNet are used to detect the forest fire hazards. The experimental results prove that the proposed technique GoogLeNet-TL provides 96% accuracy and 97% F1 score in comparison with the state-of-the-art deep learning models.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.