ANALYSIS OF ELECTROHYSTEROGRAM SIGNALS AND PREDICTION OF PRETERM BIRTHS USING MACHINE LEARNING

Dharini Raghavan, H. H. Adithya, S. Raghuram, K. V. Suma, Tricha Kulhalli
{"title":"ANALYSIS OF ELECTROHYSTEROGRAM SIGNALS AND PREDICTION OF PRETERM BIRTHS USING MACHINE LEARNING","authors":"Dharini Raghavan, H. H. Adithya, S. Raghuram, K. V. Suma, Tricha Kulhalli","doi":"10.4015/s1016237223500291","DOIUrl":null,"url":null,"abstract":"The World Health Organization (WHO) estimates that over 15 million infants are born before the entire period of pregnancy. Over a million neonatal deaths occurred in 2015 as a result of preterm delivery, which is the prime cause for most deaths among children under the age of five. Although preterm birth has no hereditary link, only 10% of preterm deliveries in high-income settings result in deaths, compared to a mortality rate of up to 90% in low-income nations. When preterm cases are discovered, in addition to enhanced care provided at home for the expecting mother, the growing foetus may also benefit from medication, hospitalization for the duration of the pregnancy, or both. Low-income countries also struggle with a lack of access to a comprehensive healthcare system, which makes it difficult to proactively detect premature births. Machine learning techniques have a great potential to improve this situation by providing an intelligent framework for the detection of critical situations and consequently alerting the individual in cases of anomalies. This will require further follow-up with medical specialists. In this work, we investigate the application of deep learning and machine learning techniques for the analysis of electrohysterogram (EHG) data, which are uterine electrical impulses used to detect preterm deliveries. The TPEHG dataset is used to train a variety of machine learning classifiers, such as Support Vector Machines, Logistic Regression, and Decision Trees, as well as Deep Neural Networks like Convolutional Neural Networks and LSTMs. Additionally, we use plurality voting to build an ensemble of various neural networks and binary classifiers that are trained to classify EHG signals. The ensemble machine learning classifier with five base classifiers produced the best results overall, with an accuracy of 98.99%, sensitivity of 98.3%, and specificity of 97.9% outperforming several state-of-the-art algorithms for preterm birth detection.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"55 7","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The World Health Organization (WHO) estimates that over 15 million infants are born before the entire period of pregnancy. Over a million neonatal deaths occurred in 2015 as a result of preterm delivery, which is the prime cause for most deaths among children under the age of five. Although preterm birth has no hereditary link, only 10% of preterm deliveries in high-income settings result in deaths, compared to a mortality rate of up to 90% in low-income nations. When preterm cases are discovered, in addition to enhanced care provided at home for the expecting mother, the growing foetus may also benefit from medication, hospitalization for the duration of the pregnancy, or both. Low-income countries also struggle with a lack of access to a comprehensive healthcare system, which makes it difficult to proactively detect premature births. Machine learning techniques have a great potential to improve this situation by providing an intelligent framework for the detection of critical situations and consequently alerting the individual in cases of anomalies. This will require further follow-up with medical specialists. In this work, we investigate the application of deep learning and machine learning techniques for the analysis of electrohysterogram (EHG) data, which are uterine electrical impulses used to detect preterm deliveries. The TPEHG dataset is used to train a variety of machine learning classifiers, such as Support Vector Machines, Logistic Regression, and Decision Trees, as well as Deep Neural Networks like Convolutional Neural Networks and LSTMs. Additionally, we use plurality voting to build an ensemble of various neural networks and binary classifiers that are trained to classify EHG signals. The ensemble machine learning classifier with five base classifiers produced the best results overall, with an accuracy of 98.99%, sensitivity of 98.3%, and specificity of 97.9% outperforming several state-of-the-art algorithms for preterm birth detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习分析子宫电图信号和预测早产
世界卫生组织(世卫组织)估计,超过1 500万婴儿在整个怀孕期之前出生。2015年有100多万新生儿因早产死亡,早产是5岁以下儿童死亡的主要原因。虽然早产与遗传无关,但在高收入环境中,只有10%的早产导致死亡,而在低收入国家,这一比例高达90%。当发现早产病例时,除了在家中为孕妇提供更好的护理外,正在生长的胎儿也可以从药物治疗、怀孕期间住院治疗或两者兼而有之中受益。低收入国家还面临缺乏全面医疗保健系统的问题,这使得难以主动发现早产。机器学习技术有很大的潜力来改善这种情况,它提供了一个智能框架来检测关键情况,从而在异常情况下提醒个人。这将需要与医学专家进一步跟进。在这项工作中,我们研究了深度学习和机器学习技术在分析宫电图(EHG)数据中的应用,这是用于检测早产的子宫电脉冲。TPEHG数据集用于训练各种机器学习分类器,如支持向量机,逻辑回归和决策树,以及深度神经网络,如卷积神经网络和lstm。此外,我们使用多数投票来构建各种神经网络和二元分类器的集合,这些分类器经过训练以对EHG信号进行分类。具有五个基分类器的集成机器学习分类器总体上产生了最好的结果,准确率为98.99%,灵敏度为98.3%,特异性为97.9%,优于几种最先进的早产检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Engineering: Applications, Basis and Communications
Biomedical Engineering: Applications, Basis and Communications Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.50
自引率
11.10%
发文量
36
审稿时长
4 months
期刊介绍: Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies. Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.
期刊最新文献
CORRELATION OF POINCARE PLOT DERIVED STRESS SCORE AND HEART RATE VARIABILITY PARAMETERS IN THE ASSESSMENT OF CORONARY ARTERY DISEASE HEURISTIC-ASSISTED ADAPTIVE HYBRID DEEP LEARNING MODEL WITH FEATURE SELECTION FOR EPILEPSY DETECTION USING EEG SIGNALS MAGNETIC RESONANCE IMAGE DENOIZING USING A DUAL-CHANNEL DISCRIMINATIVE DENOIZING NETWORK PREDICTION OF EPILEPSY BASED ON EEMD AND LSSVM DOUBLE CLASSIFICATION FILTER SELECTION FOR REMOVING NOISE FROM CT SCAN IMAGES USING DIGITAL IMAGE PROCESSING ALGORITHM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1