Direction Control of Electromagnetic Beam Scattering by Physically Stacked Cascaded Coding Metasurfaces

IF 1.8 4区 物理与天体物理 Q3 OPTICS Journal of The Optical Society of America B-optical Physics Pub Date : 2023-11-03 DOI:10.1364/josab.501052
Chenxia Li, Jie Jiang, Bo Fang, Zhi Hong, Xufeng Jing
{"title":"Direction Control of Electromagnetic Beam Scattering by Physically Stacked Cascaded Coding Metasurfaces","authors":"Chenxia Li, Jie Jiang, Bo Fang, Zhi Hong, Xufeng Jing","doi":"10.1364/josab.501052","DOIUrl":null,"url":null,"abstract":"Coded metasurfaces build a bridge between the physical world and digital worlds, making it possible to manipulate electromagnetic waves and implement programmable metamaterials through digitally coded sequences. This “digital metasurface” based on binary digital logic greatly simplifies the design process of the metasurface and improves the flexibility of regulating electromagnetic waves. Based on the principle of Fourier convolution addition, a physical superposition cascaded metasurface is designed. The metasurface unit consists of three dielectric substrates and four “H”-shaped copper metal patch boards. The addition of most coding metasurfaces is to add two basic coding metasurfaces through the addition rules between digital codes to obtain a new coding sequence, and the new coding sequence has the characteristics of the previous two coding sequences. We propose a physically superimposed cascaded encoding metasurface. By physically superposing two different sequences of metasurfaces, the cascaded metasurface formed after superposition also has the characteristics of the first two basic coding sequences. We experimentally verified the proposed idea using two different dielectric materials, and there was good consistency between the experiment and simulation, thereby verifying the consistency of the metasurface cascade and the phase-encoding element surface addition principle. This design approach has potential applications in multifunctional photonic devices.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":"175 6","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America B-optical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.501052","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Coded metasurfaces build a bridge between the physical world and digital worlds, making it possible to manipulate electromagnetic waves and implement programmable metamaterials through digitally coded sequences. This “digital metasurface” based on binary digital logic greatly simplifies the design process of the metasurface and improves the flexibility of regulating electromagnetic waves. Based on the principle of Fourier convolution addition, a physical superposition cascaded metasurface is designed. The metasurface unit consists of three dielectric substrates and four “H”-shaped copper metal patch boards. The addition of most coding metasurfaces is to add two basic coding metasurfaces through the addition rules between digital codes to obtain a new coding sequence, and the new coding sequence has the characteristics of the previous two coding sequences. We propose a physically superimposed cascaded encoding metasurface. By physically superposing two different sequences of metasurfaces, the cascaded metasurface formed after superposition also has the characteristics of the first two basic coding sequences. We experimentally verified the proposed idea using two different dielectric materials, and there was good consistency between the experiment and simulation, thereby verifying the consistency of the metasurface cascade and the phase-encoding element surface addition principle. This design approach has potential applications in multifunctional photonic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物理堆叠级联编码超表面对电磁波束散射方向的控制
编码超表面在物理世界和数字世界之间架起了一座桥梁,使操纵电磁波和通过数字编码序列实现可编程超材料成为可能。这种基于二进制数字逻辑的“数字超表面”大大简化了超表面的设计过程,提高了调节电磁波的灵活性。基于傅里叶卷积叠加原理,设计了一种物理叠加级联超表面。超表面单元由三个介电基板和四个“H”型铜金属插板组成。大多数编码元表面的添加是通过数字码之间的添加规则添加两个基本编码元表面,从而获得一个新的编码序列,新的编码序列具有前两个编码序列的特征。我们提出了一种物理叠加级联编码超表面。通过物理叠加两个不同的超表面序列,叠加后形成的级联超表面也具有前两个基本编码序列的特征。我们用两种不同的介质材料进行了实验验证,实验结果与仿真结果具有较好的一致性,从而验证了超表面级联与相位编码元件表面相加原理的一致性。这种设计方法在多功能光子器件中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
5.30%
发文量
374
审稿时长
2.1 months
期刊介绍: The Journal of the Optical Society of America B (JOSA B) is a general optics research journal that complements JOSA A. It emphasizes scientific research on the fundamentals of the interaction of light with matter such as quantum optics, nonlinear optics, and laser physics. Topics include: Advanced Instrumentation and Measurements Fiber Optics and Fiber Lasers Lasers and Other Light Sources from THz to XUV Light-Induced Phenomena Nonlinear and High Field Optics Optical Materials Optics Modes and Structured Light Optomechanics Metamaterials Nanomaterials Photonics and Semiconductor Optics Physical Optics Plasmonics Quantum Optics and Entanglement Quantum Key Distribution Spectroscopy and Atomic or Molecular Optics Superresolution and Advanced Imaging Surface Optics Ultrafast Optical Phenomena Wave Guiding and Optical Confinement JOSA B considers original research articles, feature issue contributions, invited reviews and tutorials, and comments on published articles.
期刊最新文献
Cascaded sum frequency generation of ultraviolet laser source at 228 nm based on stimulated Raman adiabatic passage Machine learning for self-tuning mode-locked lasers with multiple transmission filters Surface plasmon resonance sensor based on a D-shaped hollow microstructured fiber with bimetallic film Coherence as an indicator to discern electromagnetically induced transparency and Autler-Townes splitting Quantum Electrodynamics with a Nonmoving Dielectric Sphere: Quantizing Lorenz-Mie Scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1