Analysis of High-Frequency Dynamics of a Reacting Jet in Crossflow Based On Large Eddy Simulation

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering for Gas Turbines and Power-transactions of The Asme Pub Date : 2023-11-03 DOI:10.1115/1.4063540
Philip Bonnaire, Wolfgang Polifke
{"title":"Analysis of High-Frequency Dynamics of a Reacting Jet in Crossflow Based On Large Eddy Simulation","authors":"Philip Bonnaire, Wolfgang Polifke","doi":"10.1115/1.4063540","DOIUrl":null,"url":null,"abstract":"Abstract Distributed combustion systems have shown the potential to reduce emissions as well as increase load and fuel flexibility. A characteristic feature of such systems is a reacting jet in crossflow, which exhibits complex vortical structures. In this paper, a generic combustion chamber with elliptic reacting jets in crossflow is examined, operating under lean-premixed conditions at elevated pressure and exhibiting high-frequency transverse mode shapes. It can be seen that depending on the orientation of the elliptical shape of the jet to the crossflow, thermoacoustic modes can be suppressed. A multidimensional fast Fourier transform shows that low aspect ratios (major axis of the jet aligned with the crossflow) result in the mixed 1L1T mode of first longitudinal and first transverse structure, while this mode disappears at high aspect ratios. To get a more detailed insight into the different vortex systems of the various aspect ratios, dynamic mode decomposition is applied. This modal decomposition technique reveals for low aspect ratios a shear layer mode that oscillates at a frequency close to the acoustic mixed mode. For this configuration, a mode representing a flapping motion is also identified. For high aspect ratios, the shear layer vortex increases its frequency and a higher-frequent mode appears in the acoustic spectrum.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063540","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Distributed combustion systems have shown the potential to reduce emissions as well as increase load and fuel flexibility. A characteristic feature of such systems is a reacting jet in crossflow, which exhibits complex vortical structures. In this paper, a generic combustion chamber with elliptic reacting jets in crossflow is examined, operating under lean-premixed conditions at elevated pressure and exhibiting high-frequency transverse mode shapes. It can be seen that depending on the orientation of the elliptical shape of the jet to the crossflow, thermoacoustic modes can be suppressed. A multidimensional fast Fourier transform shows that low aspect ratios (major axis of the jet aligned with the crossflow) result in the mixed 1L1T mode of first longitudinal and first transverse structure, while this mode disappears at high aspect ratios. To get a more detailed insight into the different vortex systems of the various aspect ratios, dynamic mode decomposition is applied. This modal decomposition technique reveals for low aspect ratios a shear layer mode that oscillates at a frequency close to the acoustic mixed mode. For this configuration, a mode representing a flapping motion is also identified. For high aspect ratios, the shear layer vortex increases its frequency and a higher-frequent mode appears in the acoustic spectrum.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大涡模拟的横流反应射流高频动力学分析
分布式燃烧系统已经显示出减少排放以及增加负载和燃料灵活性的潜力。这种系统的一个特征是在横流中有一个反应射流,它表现出复杂的旋涡结构。本文研究了一种具有椭圆反应射流的通用横流燃烧室,该燃烧室在稀薄预混条件下在高压下工作,并表现出高频横向模态。可以看出,根据射流的椭圆方向,可以抑制热声模态。多维快速傅里叶变换表明,低纵横比(射流长轴与横流对齐)会导致先纵后横的混合1L1T模式,而在高纵横比下这种模式消失。为了更详细地了解不同纵横比下的不同涡系统,应用了动态模态分解。这种模态分解技术揭示了低纵横比下的剪切层模态,其振动频率接近于声学混合模态。对于这种构型,还确定了表示扑动的模式。高纵横比时,剪切层涡的频率增加,在声谱中出现更高频率的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
20.00%
发文量
292
审稿时长
2.0 months
期刊介绍: The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.
期刊最新文献
Effect of Inert Species On the Static and Dynamic Stability of a Piloted, Swirl-Stabilized Flame Advanced Modelling of Flow and Heat Transfer in Rotating Disc Cavities Using Open-Source CFD Reacting Flow Prediction of the Low-Swirl Lifted Flame in an Aeronautical Combustor with Angular Air Supply Effect of Unsteady Fan-Intake Interaction On Short Intake Design Intermittency of Flame Structure and Thermo-acoustic Behavior in a Staged Multipoint Injector Using Liquid Fuel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1