Ignition of Various Lubricating Oil Compositions Using a Shock Tube

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Engineering for Gas Turbines and Power-transactions of The Asme Pub Date : 2023-11-03 DOI:10.1115/1.4063543
Matthew Abulail, Sean P. Cooper, Matthew G Sandberg, Eric Petersen
{"title":"Ignition of Various Lubricating Oil Compositions Using a Shock Tube","authors":"Matthew Abulail, Sean P. Cooper, Matthew G Sandberg, Eric Petersen","doi":"10.1115/1.4063543","DOIUrl":null,"url":null,"abstract":"Abstract With new restrictions imposed on gas turbine efficiencies and power outputs, lubricating oils are used at higher temperatures and harsher conditions leading to potential, unintended combustion. To establish an understanding of lubricating oil's resistance to combustion, a new spray injector system was utilized in the High-Pressure Shock Tube (HPST) Facility at the TEES Turbomachinery Laboratory at Texas A&M University. Two gas turbine oils (Mobil DTE 732 and Castrol Perfecto X32), a base mineral oil, and a surrogate (n-hexadecane) were tested at postreflected shock conditions at equivalence ratios near 2.5. Castrol Perfecto X32 was also characterized at an equivalence ratio near 1.2. All of the lubricating oils displayed ignition between temperatures of 1152 and 1383 K and near atmospheric pressures. To characterize combustion, two different definitions of ignition delay time (IDT) were considered: sidewall OH* chemiluminescence and sidewall pressure. Both definitions were used to create temperature-dependent correlations for each of the lubricating oils. In general, both definitions provided similar results within the accuracy of the measurements. One trend from the data herein is that the brand-name oils (Mobil DTE 732 and Castrol Perfecto X32) provided ignition delay times that were similar to each other but slightly larger than the corresponding mineral oil and n-hexadecane results. This difference could be attributed to the additives that are present in the brand-name oils.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063543","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract With new restrictions imposed on gas turbine efficiencies and power outputs, lubricating oils are used at higher temperatures and harsher conditions leading to potential, unintended combustion. To establish an understanding of lubricating oil's resistance to combustion, a new spray injector system was utilized in the High-Pressure Shock Tube (HPST) Facility at the TEES Turbomachinery Laboratory at Texas A&M University. Two gas turbine oils (Mobil DTE 732 and Castrol Perfecto X32), a base mineral oil, and a surrogate (n-hexadecane) were tested at postreflected shock conditions at equivalence ratios near 2.5. Castrol Perfecto X32 was also characterized at an equivalence ratio near 1.2. All of the lubricating oils displayed ignition between temperatures of 1152 and 1383 K and near atmospheric pressures. To characterize combustion, two different definitions of ignition delay time (IDT) were considered: sidewall OH* chemiluminescence and sidewall pressure. Both definitions were used to create temperature-dependent correlations for each of the lubricating oils. In general, both definitions provided similar results within the accuracy of the measurements. One trend from the data herein is that the brand-name oils (Mobil DTE 732 and Castrol Perfecto X32) provided ignition delay times that were similar to each other but slightly larger than the corresponding mineral oil and n-hexadecane results. This difference could be attributed to the additives that are present in the brand-name oils.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用激波管点火各种润滑油成分
随着对燃气轮机效率和功率输出的新限制,润滑油在更高的温度和更恶劣的条件下使用,导致潜在的意外燃烧。为了了解润滑油的耐燃性,在德克萨斯a&m大学TEES涡轮机械实验室的高压激波管(HPST)设施中使用了一种新的喷射器系统。两种燃气涡轮油(美孚DTE 732和嘉实多Perfecto X32)、一种基础矿物油和一种替代油(正十六烷)在反射冲击条件下进行了测试,当量比接近2.5。嘉实多Perfecto X32的等效比率也接近1.2。所有的润滑油在1152和1383 K的温度和接近大气压力之间都显示出点火。为了表征燃烧,考虑了两种不同的点火延迟时间(IDT)定义:侧壁OH*化学发光和侧壁压力。这两种定义都用于创建每种润滑油的温度依赖相关性。一般来说,两种定义在测量精度范围内提供了相似的结果。数据的一个趋势是,品牌油(美孚DTE 732和嘉实多Perfecto X32)提供的点火延迟时间彼此相似,但略大于相应的矿物油和正十六烷的结果。这种差异可能归因于品牌油中存在的添加剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
20.00%
发文量
292
审稿时长
2.0 months
期刊介绍: The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.
期刊最新文献
Effect of Inert Species On the Static and Dynamic Stability of a Piloted, Swirl-Stabilized Flame Advanced Modelling of Flow and Heat Transfer in Rotating Disc Cavities Using Open-Source CFD Reacting Flow Prediction of the Low-Swirl Lifted Flame in an Aeronautical Combustor with Angular Air Supply Effect of Unsteady Fan-Intake Interaction On Short Intake Design Intermittency of Flame Structure and Thermo-acoustic Behavior in a Staged Multipoint Injector Using Liquid Fuel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1