{"title":"Testing equality of means in one-way ANOVA using three and four moment approximations","authors":"Gamze GUVEN","doi":"10.31801/cfsuasmas.1252070","DOIUrl":null,"url":null,"abstract":"In this study, we focus on two test statistics for testing the equality of treatment means in one-way analysis of variance (ANOVA). The first one is the well known Cochran ($C_{LS}$) test statistic based on least squares (LS) estimators and the second one is robust version of it ($RC_{MML}$) based on modified maximum likelihood (MML) estimators. These two test statistics are asymptotically distributed as chi-square. However, distributions of them are unknown for small samples. Therefore, three-moment chi-square and four moment $F$ approximations to the null distributions of $C_{LS}$ and $RC_{MML}$ are derived inspired by Tiku and Wong [19]. To investigate the small and moderate sample properties of these tests based on the mentioned approximations, an extensive Monte-Carlo simulation study is performed when the underlying distribution is long-tailed symmetric (LTS). Simulation results show that four-moment $F$ approximation provides better approximation than the three-moment chi-square approximation for both $C_{LS}$ and $RC_{MML}$ tests. Therefore, the simulated Type I error rates and powers of the $C_{LS}$ and $RC_{MML}$ test statistics are calculated using four-moment $F$ approximation. According to simulation results, $RC_{MML}$ test is more powerful than the corresponding $C_{LS}$ test.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":"24 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1252070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we focus on two test statistics for testing the equality of treatment means in one-way analysis of variance (ANOVA). The first one is the well known Cochran ($C_{LS}$) test statistic based on least squares (LS) estimators and the second one is robust version of it ($RC_{MML}$) based on modified maximum likelihood (MML) estimators. These two test statistics are asymptotically distributed as chi-square. However, distributions of them are unknown for small samples. Therefore, three-moment chi-square and four moment $F$ approximations to the null distributions of $C_{LS}$ and $RC_{MML}$ are derived inspired by Tiku and Wong [19]. To investigate the small and moderate sample properties of these tests based on the mentioned approximations, an extensive Monte-Carlo simulation study is performed when the underlying distribution is long-tailed symmetric (LTS). Simulation results show that four-moment $F$ approximation provides better approximation than the three-moment chi-square approximation for both $C_{LS}$ and $RC_{MML}$ tests. Therefore, the simulated Type I error rates and powers of the $C_{LS}$ and $RC_{MML}$ test statistics are calculated using four-moment $F$ approximation. According to simulation results, $RC_{MML}$ test is more powerful than the corresponding $C_{LS}$ test.