A hybrid model of spatial autoregressive-multivariate adaptive generalized Poisson regression spline

IF 1.4 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Decision Science Letters Pub Date : 2023-01-01 DOI:10.5267/j.dsl.2023.7.004
Septia Devi Prihastuti Yasmirullah, Bambang Widjanarko Otok, Jerry Dwi Trijoyo Purnomo, Dedy Dwi Prastyo
{"title":"A hybrid model of spatial autoregressive-multivariate adaptive generalized Poisson regression spline","authors":"Septia Devi Prihastuti Yasmirullah, Bambang Widjanarko Otok, Jerry Dwi Trijoyo Purnomo, Dedy Dwi Prastyo","doi":"10.5267/j.dsl.2023.7.004","DOIUrl":null,"url":null,"abstract":"Several Multivariate Adaptive Regression Spline (MARS) approaches are available to model categorical and numerical (especially continuous) data. Currently, there are other numerical data types—discrete or count data—that call for specific consideration in modeling. Additionally, spatially correlated count data is frequently observed. This has been seen in the case of health data, for example, the number of newborn fatalities, tuberculosis patients, hospital visitors, etc. However, currently no structurally consistent nonparametric regression and MARS model for count data incorporating spatial lag autocorrelation. The SAR-MAGPRS estimator (Spatial Autoregressive - Multivariate Adaptive Generalized Poisson Regression Spline) is developed to fill this gap. Although it can be applied to different count distributions, the estimator was developed in this study under the assumption of a Generalized Poisson distribution. This paper provides an information-theoretic framework for incorporating knowledge of the spatial structure and non-parametric regression models, especially MARS for the count data types. Moreover, the proposed method can assist in modeling the number of diseases while health policies are being developed. The framework presents an application of the Penalized Least Square (PLS) method to estimate the SAR – MAGPRS model.","PeriodicalId":38141,"journal":{"name":"Decision Science Letters","volume":"185 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.dsl.2023.7.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Several Multivariate Adaptive Regression Spline (MARS) approaches are available to model categorical and numerical (especially continuous) data. Currently, there are other numerical data types—discrete or count data—that call for specific consideration in modeling. Additionally, spatially correlated count data is frequently observed. This has been seen in the case of health data, for example, the number of newborn fatalities, tuberculosis patients, hospital visitors, etc. However, currently no structurally consistent nonparametric regression and MARS model for count data incorporating spatial lag autocorrelation. The SAR-MAGPRS estimator (Spatial Autoregressive - Multivariate Adaptive Generalized Poisson Regression Spline) is developed to fill this gap. Although it can be applied to different count distributions, the estimator was developed in this study under the assumption of a Generalized Poisson distribution. This paper provides an information-theoretic framework for incorporating knowledge of the spatial structure and non-parametric regression models, especially MARS for the count data types. Moreover, the proposed method can assist in modeling the number of diseases while health policies are being developed. The framework presents an application of the Penalized Least Square (PLS) method to estimate the SAR – MAGPRS model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间自回归-多元自适应广义泊松回归样条的混合模型
几种多元自适应样条回归(MARS)方法可用于对分类和数值(特别是连续)数据进行建模。目前,还有其他数值数据类型——离散数据或计数数据——在建模时需要特别考虑。此外,经常观察到空间相关的计数数据。这一点在保健数据中得到了体现,例如新生儿死亡人数、结核病患者人数、医院访客人数等。然而,目前还没有结构一致的非参数回归和MARS模型来处理包含空间滞后自相关的计数数据。SAR-MAGPRS估计器(空间自回归-多元自适应广义泊松回归样条)的发展填补了这一空白。虽然它可以应用于不同的计数分布,但本研究是在广义泊松分布的假设下发展的。本文提供了一个信息理论框架,用于整合空间结构和非参数回归模型的知识,特别是用于计数数据类型的MARS。此外,拟议的方法可以在制定卫生政策时协助对疾病数量进行建模。该框架提出了惩罚最小二乘(PLS)方法在SAR - MAGPRS模型估计中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Decision Science Letters
Decision Science Letters Decision Sciences-Decision Sciences (all)
CiteScore
3.40
自引率
5.30%
发文量
49
审稿时长
20 weeks
期刊最新文献
Time series prediction of novel coronavirus COVID-19 data in west Java using Gaussian processes and least median squared linear regression Determinants of woodcraft family business success Analytical evaluation of big data applications in E-commerce: A mixed method approach A two-stage SEM-artificial neural network analysis of the organizational effects of Internet of things adoption in auditing firms A novel crossover operator for genetic algorithm: Stas crossover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1