Numerical investigation of mode failures in submerged granular columns

IF 2.8 Q2 MECHANICS Flow (Cambridge, England) Pub Date : 2023-01-01 DOI:10.1017/flo.2023.23
E.P. Montellà, J. Chauchat, C. Bonamy, D. Weij, G.H. Keetels, T.J. Hsu
{"title":"Numerical investigation of mode failures in submerged granular columns","authors":"E.P. Montellà, J. Chauchat, C. Bonamy, D. Weij, G.H. Keetels, T.J. Hsu","doi":"10.1017/flo.2023.23","DOIUrl":null,"url":null,"abstract":"In submerged sandy slopes, soil is frequently eroded as a combination of two main mechanisms: breaching, which refers to the retrogressive failure of a steep slope forming a turbidity current, and instantaneous sliding wedges, known as shear failure, that also contribute to shape the morphology of the soil deposit. Although there are several modes of failures, in this paper we investigate breaching and shear failures of granular columns using the two-fluid approach. The numerical model is first applied to simulate small-scale granular column collapses (Rondon et al. , Phys. Fluids , vol. 23, 2011, 073301) with different initial volume fractions to study the role of the initial conditions in the main flow dynamics. For loosely packed granular columns, the porous medium initially contracts and the resulting positive pore pressure leads to a rapid collapse. Whereas in initially dense-packing columns, the porous medium dilates and negative pore pressure is generated stabilizing the granular column, which results in a slow collapse. The proposed numerical approach shows good agreement with the experimental data in terms of morphology and excess of pore pressure. Numerical results are extended to a large-scale application (Weij, doctoral dissertation, 2020, Delft University of Technology; Alhaddad et al. , J. Mar. Sci. Eng. , vol. 11, 2023, 560) known as the breaching process. This phenomenon may occur naturally at coasts or on dykes and levees in rivers but it can also be triggered by humans during dredging operations. The results indicate that the two-phase flow model correctly predicts the dilative behaviour and the subsequent turbidity currents associated with the breaching process.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":"61 2 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2023.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

In submerged sandy slopes, soil is frequently eroded as a combination of two main mechanisms: breaching, which refers to the retrogressive failure of a steep slope forming a turbidity current, and instantaneous sliding wedges, known as shear failure, that also contribute to shape the morphology of the soil deposit. Although there are several modes of failures, in this paper we investigate breaching and shear failures of granular columns using the two-fluid approach. The numerical model is first applied to simulate small-scale granular column collapses (Rondon et al. , Phys. Fluids , vol. 23, 2011, 073301) with different initial volume fractions to study the role of the initial conditions in the main flow dynamics. For loosely packed granular columns, the porous medium initially contracts and the resulting positive pore pressure leads to a rapid collapse. Whereas in initially dense-packing columns, the porous medium dilates and negative pore pressure is generated stabilizing the granular column, which results in a slow collapse. The proposed numerical approach shows good agreement with the experimental data in terms of morphology and excess of pore pressure. Numerical results are extended to a large-scale application (Weij, doctoral dissertation, 2020, Delft University of Technology; Alhaddad et al. , J. Mar. Sci. Eng. , vol. 11, 2023, 560) known as the breaching process. This phenomenon may occur naturally at coasts or on dykes and levees in rivers but it can also be triggered by humans during dredging operations. The results indicate that the two-phase flow model correctly predicts the dilative behaviour and the subsequent turbidity currents associated with the breaching process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浸没颗粒柱模态破坏的数值研究
在浸没的砂质斜坡中,土壤经常受到两种主要机制的侵蚀:破裂,这是指形成浊流的陡坡的后退破坏,以及被称为剪切破坏的瞬时滑动楔,这也有助于形成土壤沉积物的形态。虽然有几种破坏模式,但本文采用双流体方法研究了颗粒柱的破坏和剪切破坏。数值模型首先应用于模拟小尺度颗粒柱的崩塌(Rondon et al., Phys.;流体,vol. 23, 2011, 0733301),以研究初始条件在主流动力学中的作用。对于松散堆积的颗粒柱,多孔介质最初收缩,由此产生的正孔隙压力导致快速坍塌。而在初始致密填充柱中,多孔介质膨胀,产生负孔隙压力,使颗粒柱稳定,导致缓慢坍塌。所提出的数值方法与实验数据在孔隙形态和超压方面吻合较好。(Weij,博士学位论文,2020,代尔夫特理工大学;Alhaddad et al., J. 3 . Sci。Eng。, vol. 11, 2023, 560)被称为突破过程。这种现象可能在海岸或河流的堤坝上自然发生,但也可能是人类在疏浚作业中引发的。结果表明,两相流模型正确地预测了与破裂过程相关的扩张行为和随后的浊度流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Benefits of controlled inclination for contactless transport by squeeze-film levitation Investigating cohesive sediment dynamics in open waters via grain-resolved simulations Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies Competing effects of buoyancy-driven and electrothermal flows for Joule heating-induced transport in microchannels Effects of prey capture on the swimming and feeding performance of choanoflagellates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1