Explaining Deep Face Algorithms Through Visualization: A Survey

Thrupthi Ann John;Vineeth N. Balasubramanian;C. V. Jawahar
{"title":"Explaining Deep Face Algorithms Through Visualization: A Survey","authors":"Thrupthi Ann John;Vineeth N. Balasubramanian;C. V. Jawahar","doi":"10.1109/TBIOM.2023.3319837","DOIUrl":null,"url":null,"abstract":"Although current deep models for face tasks surpass human performance on some benchmarks, we do not understand how they work. Thus, we cannot predict how it will react to novel inputs, resulting in catastrophic failures and unwanted biases in the algorithms. Explainable AI helps bridge the gap, but currently, there are very few visualization algorithms designed for faces. This work undertakes a first-of-its-kind meta-analysis of explainability algorithms in the face domain. We explore the nuances and caveats of adapting general-purpose visualization algorithms to the face domain, illustrated by computing visualizations on popular face models. We review existing face explainability works and reveal valuable insights into the structure and hierarchy of face networks. We also determine the design considerations for practical face visualizations accessible to AI practitioners by conducting a user study on the utility of various explainability algorithms.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 1","pages":"15-29"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10265112/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although current deep models for face tasks surpass human performance on some benchmarks, we do not understand how they work. Thus, we cannot predict how it will react to novel inputs, resulting in catastrophic failures and unwanted biases in the algorithms. Explainable AI helps bridge the gap, but currently, there are very few visualization algorithms designed for faces. This work undertakes a first-of-its-kind meta-analysis of explainability algorithms in the face domain. We explore the nuances and caveats of adapting general-purpose visualization algorithms to the face domain, illustrated by computing visualizations on popular face models. We review existing face explainability works and reveal valuable insights into the structure and hierarchy of face networks. We also determine the design considerations for practical face visualizations accessible to AI practitioners by conducting a user study on the utility of various explainability algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过可视化解释深度人脸算法:调查
虽然目前用于人脸任务的深度模型在某些基准测试中超过了人类的表现,但我们并不了解它们是如何工作的。因此,我们无法预测它将如何对新输入做出反应,从而导致算法出现灾难性的失败和不必要的偏差。可解释的人工智能有助于弥合这一差距,但目前针对人脸设计的可视化算法还很少。这项研究首次对人脸领域的可解释性算法进行了元分析。我们通过对流行的人脸模型进行可视化计算,探讨了将通用可视化算法应用于人脸领域的细微差别和注意事项。我们回顾了现有的人脸可解释性作品,揭示了对人脸网络结构和层次的宝贵见解。我们还通过对各种可解释性算法的实用性进行用户研究,确定了可供人工智能从业人员使用的实用人脸可视化的设计考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE T-BIOM Editorial Board Changes IEEE Transactions on Biometrics, Behavior, and Identity Science Publication Information IEEE Transactions on Biometrics, Behavior, and Identity Science Information for Authors 2024 Index IEEE Transactions on Biometrics, Behavior, and Identity Science Vol. 6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1