Lucas Patricio Hernández-Saravia, Erico R. Carmona, Aliro Villacorta, Felipe S. Carevic, Ricardo Marcos
{"title":"Sustainable use of mining and electronic waste for nanomaterial synthesis with technological applications: state of the art and future directions","authors":"Lucas Patricio Hernández-Saravia, Erico R. Carmona, Aliro Villacorta, Felipe S. Carevic, Ricardo Marcos","doi":"10.1080/17518253.2023.2260401","DOIUrl":null,"url":null,"abstract":"In the last years, the study of metals recovery and nanoparticle transformation from industrial residues has gained attention because this theme contributed to improving the valorization of the so-called wasted, transforming the simple recycling strategies to more complex and highly technological new approach methodologies, delivering added value to raw materials and allowing the development of new advanced materials with unique physicochemical characteristics for multiple functionalities according to the new growing demands. The present work reviews the available literature about using mining and electronic waste (e-waste) for recycling-extracting metallic products and their transformation into nanomaterials (NMs). The applications and challenges of these NMs were also analyzed and discussed. Acid and alkaline treatments were the main recovery methods, while the synthesis by chemical reduction was the most used for the fabrication of NPs. Nano-alloy, Cu, Fe, and Au NPs were the main products obtained from PCBs and tailing waste. In addition, catalysis, sensors, and antimicrobial activity were the primary applications described. Due to the reutilization of metallic raw, direct transformation, low-cost, and eco-friendly synthesis processes could be an attractive alternative to the production of NPs on large scales.","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"7 1","pages":"0"},"PeriodicalIF":5.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Letters and Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17518253.2023.2260401","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the last years, the study of metals recovery and nanoparticle transformation from industrial residues has gained attention because this theme contributed to improving the valorization of the so-called wasted, transforming the simple recycling strategies to more complex and highly technological new approach methodologies, delivering added value to raw materials and allowing the development of new advanced materials with unique physicochemical characteristics for multiple functionalities according to the new growing demands. The present work reviews the available literature about using mining and electronic waste (e-waste) for recycling-extracting metallic products and their transformation into nanomaterials (NMs). The applications and challenges of these NMs were also analyzed and discussed. Acid and alkaline treatments were the main recovery methods, while the synthesis by chemical reduction was the most used for the fabrication of NPs. Nano-alloy, Cu, Fe, and Au NPs were the main products obtained from PCBs and tailing waste. In addition, catalysis, sensors, and antimicrobial activity were the primary applications described. Due to the reutilization of metallic raw, direct transformation, low-cost, and eco-friendly synthesis processes could be an attractive alternative to the production of NPs on large scales.
期刊介绍:
Green Chemistry Letters and Reviews is an Open Access, peer-reviewed journal focused on rapid publication of innovative new syntheses and procedures that reduce or eliminate the use and generation of hazardous materials. Reviews of state-of-the-art green chemistry technologies are also included within the journal''s scope.
Green Chemistry Letters and Reviews is divided into three overlapping topic areas: research, education, and industrial implementation. The journal publishes both letters, which concisely communicate the most time-sensitive results, and reviews, which aid researchers in understanding the state of science on important green chemistry topics. Submissions are encouraged which apply the 12 principles of green chemistry to:
-Green Chemistry Education-
Synthetic Reaction Pathways-
Research and Process Analytical Techniques-
Separation and Purification Technologies-
Renewable Feedstocks-
Degradable Products