A Novel Classification Method for PolSAR Image Combining the Deep Learning Model and Adaptive Boosting of Shallow Classifiers

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-01-02 DOI:10.1080/07038992.2023.2257331
Yan Duan, Shaojie Bai, Limin Liu, Guangwei Wang
{"title":"A Novel Classification Method for PolSAR Image Combining the Deep Learning Model and Adaptive Boosting of Shallow Classifiers","authors":"Yan Duan, Shaojie Bai, Limin Liu, Guangwei Wang","doi":"10.1080/07038992.2023.2257331","DOIUrl":null,"url":null,"abstract":"Polarimetric synthetic aperture radar (PolSAR) images are classified mainly according to the backscattering information of ground objects. For regions with complex backscattering information, misclassification is easy to occur, which leads to challenges in improving the classification accuracy of the PolSAR image. Given this situation, this paper combines the Deep Learning Model and traditional classifiers to classify PolSAR image. First, the Convolution Neural Network (CNN) was used to classify the PolSAR image and according to the category prediction probability of pixels, the key pixels easily misclassified are located. Then, the adaptive boosting (AdaBoost) algorithm combined the three shallow classifiers (the Support Vector Machine (SVM), the Wishart and the Decision Tree classifier) into strong classifiers to reclassify the key pixels. Finally, the labels of key pixels and other pixels are output as the final classification result. Experiments on two PolSAR images show that the proposed method can improve classification performance and obtain better classification results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07038992.2023.2257331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Polarimetric synthetic aperture radar (PolSAR) images are classified mainly according to the backscattering information of ground objects. For regions with complex backscattering information, misclassification is easy to occur, which leads to challenges in improving the classification accuracy of the PolSAR image. Given this situation, this paper combines the Deep Learning Model and traditional classifiers to classify PolSAR image. First, the Convolution Neural Network (CNN) was used to classify the PolSAR image and according to the category prediction probability of pixels, the key pixels easily misclassified are located. Then, the adaptive boosting (AdaBoost) algorithm combined the three shallow classifiers (the Support Vector Machine (SVM), the Wishart and the Decision Tree classifier) into strong classifiers to reclassify the key pixels. Finally, the labels of key pixels and other pixels are output as the final classification result. Experiments on two PolSAR images show that the proposed method can improve classification performance and obtain better classification results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种结合深度学习模型和浅分类器自适应增强的PolSAR图像分类新方法
偏振合成孔径雷达(PolSAR)图像的分类主要是根据地物的后向散射信息。对于后向散射信息复杂的区域,容易出现误分类,这给提高PolSAR图像的分类精度带来了挑战。针对这种情况,本文将深度学习模型与传统分类器相结合,对PolSAR图像进行分类。首先,利用卷积神经网络(CNN)对PolSAR图像进行分类,根据像素的类别预测概率定位容易被误分类的关键像素;然后,自适应增强(AdaBoost)算法将三个浅分类器(支持向量机(SVM)、Wishart和决策树分类器)组合成强分类器,对关键像素进行重分类。最后输出关键像素和其他像素的标签,作为最终的分类结果。在两幅PolSAR图像上的实验表明,该方法可以提高分类性能,获得较好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1