{"title":"Combined passive and active flow control for fixed-wing micro air vehicles","authors":"A Esmaeili, JMM Sousa","doi":"10.1177/17568293231197127","DOIUrl":null,"url":null,"abstract":"This study presents the design, implementation, and assessment of a combined passive and active flow control technique with the aim of increasing the aerodynamic performance of fixed-wing Micro Air Vehicles (MAVs). Power consumption restrictions in MAVs support the choice of passive flow control solutions such as the use of a modified (tubercled) wing leading edge. This strategy successfully allows to delay and mitigate aerodynamic stall but detrimental effects are found at pre-stall operating conditions. In order to retrieve the lift-generation capabilities of the baseline wing at pre-stall, a subsidiary active flow control method making use of air blowing was designed and installed in the modified wing. Guidance to the selection of optimum settings was provided by experimental and computational analyses. The resulting hybrid flow control system demonstrated its effectiveness, thus producing generalized lift enhancements irrespectively of the attitude of the wing.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":"33 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17568293231197127","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the design, implementation, and assessment of a combined passive and active flow control technique with the aim of increasing the aerodynamic performance of fixed-wing Micro Air Vehicles (MAVs). Power consumption restrictions in MAVs support the choice of passive flow control solutions such as the use of a modified (tubercled) wing leading edge. This strategy successfully allows to delay and mitigate aerodynamic stall but detrimental effects are found at pre-stall operating conditions. In order to retrieve the lift-generation capabilities of the baseline wing at pre-stall, a subsidiary active flow control method making use of air blowing was designed and installed in the modified wing. Guidance to the selection of optimum settings was provided by experimental and computational analyses. The resulting hybrid flow control system demonstrated its effectiveness, thus producing generalized lift enhancements irrespectively of the attitude of the wing.
期刊介绍:
The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.