{"title":"Validation of a Constant DC-Capacitor Voltage Control Strategy for a Four-Leg Active Power-Line Conditioner: A Simulation and Experimental Study","authors":"Yuka Sabi, Hiroaki Yamada, Toshihiko Tanaka, Fuka Ikeda, Masayuki Okamoto, Seong Ryong Lee","doi":"10.1541/ieejjia.23004141","DOIUrl":null,"url":null,"abstract":"This study demonstrates that a proportional-integral (PI) controller in the constant DC-capacitor voltage control (CDCVC) block of a four-leg active power-line conditioner (APLC) in three-phase four-wire distribution feeders (TPFWDFs) accurately calculates the root-mean-square (RMS) value of the fundamental active currents in the feeder currents, using simulation and experimental results. The accuracy of the RMS value calculated by the PI controller in the CDCVC block is crucial because the reference signals for the source currents are calculated using the RMS value calculated in a previously proposed CDCVC-based strategy for the four-leg APLC in TPFWDFs. In this study, the previously proposed CDCVC-based strategy is modified by adding an algorithm for calculating the fundamental active currents in the feeder currents. The basic principle of the modified CDCVC-based strategy is discussed in detail and confirmed by digital computer simulations using a power electronics simulator (PSIM). A scaled-down experimental set-up is developed and examined. The simulation and experimental results demonstrate that the PI controller in the CDCVC block of the four-leg APLC accurately calculates the RMS value of the fundamental active currents in the load currents. Therefore, it is concluded that the previously proposed CDCVC-based strategy for a four-leg APLC is applicable to the four-leg APLCs in practical TPFWDFs.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"13 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.23004141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study demonstrates that a proportional-integral (PI) controller in the constant DC-capacitor voltage control (CDCVC) block of a four-leg active power-line conditioner (APLC) in three-phase four-wire distribution feeders (TPFWDFs) accurately calculates the root-mean-square (RMS) value of the fundamental active currents in the feeder currents, using simulation and experimental results. The accuracy of the RMS value calculated by the PI controller in the CDCVC block is crucial because the reference signals for the source currents are calculated using the RMS value calculated in a previously proposed CDCVC-based strategy for the four-leg APLC in TPFWDFs. In this study, the previously proposed CDCVC-based strategy is modified by adding an algorithm for calculating the fundamental active currents in the feeder currents. The basic principle of the modified CDCVC-based strategy is discussed in detail and confirmed by digital computer simulations using a power electronics simulator (PSIM). A scaled-down experimental set-up is developed and examined. The simulation and experimental results demonstrate that the PI controller in the CDCVC block of the four-leg APLC accurately calculates the RMS value of the fundamental active currents in the load currents. Therefore, it is concluded that the previously proposed CDCVC-based strategy for a four-leg APLC is applicable to the four-leg APLCs in practical TPFWDFs.
期刊介绍:
IEEJ Journal of Industry Applications: Power Electronics - AC/AC Conversion and DC/DC Conversion, - Power Semiconductor Devices and their Application, - Inverters and Rectifiers, - Power Supply System and its Application, - Power Electronics Modeling, Simulation, Design and Control, - Renewable Electric Energy Conversion Industrial System - Mechatronics and Robotics, - Industrial Instrumentation and Control, - Sensing, Actuation, Motion Control and Haptics, - Factory Automation and Production Facility Control, - Automobile Technology and ITS Technology, - Information Oriented Industrial System Electrical Machinery and Apparatus - Electric Machines Design, Modeling and Control, - Rotating Motor Drives and Linear Motor Drives, - Electric Vehicles and Hybrid Electric Vehicles, - Electric Railway and Traction Control, - Magnetic Levitation and Magnetic Bearing, - Static Apparatus and Superconductive Application Publishing Ethics of IEEJ Journal of Industry Applications: Code of Ethics on IEEJ IEEJ Journal of Industry Applications is a peer-reviewed journal of IEEJ (the Institute of Electrical Engineers of Japan). The publication of IEEJ Journal of Industry Applications is an essential building article in the development of a coherent and respected network of knowledge. It is a direct reflection of the quality of the work of the authors and the institutions that support them. IEEJ Journal of Industry Applications has "Peer-reviewed articles support." It is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer and IEEJ (the Institute of Electrical Engineers of Japan).