{"title":"Asymmetric Winding Structure for Concentrated Winding Permanent Magnet Motors to Achieve a Low Torque Ripple and High Slot Fill Factor","authors":"Yu Hirotani, Kodai Okazaki, Hiroko Ikeda, Kazumasa Ito, Masatsugu Nakano","doi":"10.1541/ieejjia.22003907","DOIUrl":null,"url":null,"abstract":"In this paper, we propose asymmetric winding structure to achieve a low torque ripple and high slot fill factor. Existing methods developed for this purpose improve the winding factors of harmonics and the slot fill factor by ensuring that the winding arrangement and number of turns for each coil are asymmetric. In contrast, an asymmetric winding structure generally lowers the symmetry of the magnetomotive force of the stator and generates electromagnetic excitation forces with lower spacial order modes, resulting in increased vibration. Therefore, in this study, we aim to improve the winding factor and the slot fill factor by changing the winding arrangement and the number of turns while considering the symmetry of the electromagnetic field. First, the working principle of techniques for improving the characteristics of the proposed winding structure are discussed. Thereafter, the results of magnetic field analysis and the verification of the said improvements to the asymmetric prototype, along with the effects, are presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22003907","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose asymmetric winding structure to achieve a low torque ripple and high slot fill factor. Existing methods developed for this purpose improve the winding factors of harmonics and the slot fill factor by ensuring that the winding arrangement and number of turns for each coil are asymmetric. In contrast, an asymmetric winding structure generally lowers the symmetry of the magnetomotive force of the stator and generates electromagnetic excitation forces with lower spacial order modes, resulting in increased vibration. Therefore, in this study, we aim to improve the winding factor and the slot fill factor by changing the winding arrangement and the number of turns while considering the symmetry of the electromagnetic field. First, the working principle of techniques for improving the characteristics of the proposed winding structure are discussed. Thereafter, the results of magnetic field analysis and the verification of the said improvements to the asymmetric prototype, along with the effects, are presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.