Introduction to grid‐scale battery energy storage system concepts and fire hazards

IF 1 4区 工程技术 Q4 ENGINEERING, CHEMICAL Process Safety Progress Pub Date : 2023-10-14 DOI:10.1002/prs.12541
Veronica Goldsmith
{"title":"Introduction to <scp>grid‐scale</scp> battery energy storage system concepts and fire hazards","authors":"Veronica Goldsmith","doi":"10.1002/prs.12541","DOIUrl":null,"url":null,"abstract":"Abstract As the world continues to enact progressive climate change targets, renewable energy solutions are needed to achieve these goals. One such solution is large‐scale lithium‐ion battery (LIB) energy storage systems which are at the forefront in ensuring that solar‐ and wind‐generated power is delivered when the grids need it most. However, the perceived hazards of LIBs due to recent events in the United States and Australia pose a risk to their future success. When a battery energy storage system (BESS) has a multilayered approach to safety, the thermal runaway, fire, and explosion hazards can be mitigated. Successful implementation of this approach requires cooperation, collaboration, and education across all stakeholder groups to break down these preconceived notions. Much can be learned from the recent BESS fire and explosion events to inform safer design and operation. These events and their contributing factors share many commonalities with historic losses in the hydrocarbon industry. Fire and process safety engineers who have traditionally worked in the hydrocarbon industry can be of immense value to the BESS industry.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"44 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/prs.12541","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract As the world continues to enact progressive climate change targets, renewable energy solutions are needed to achieve these goals. One such solution is large‐scale lithium‐ion battery (LIB) energy storage systems which are at the forefront in ensuring that solar‐ and wind‐generated power is delivered when the grids need it most. However, the perceived hazards of LIBs due to recent events in the United States and Australia pose a risk to their future success. When a battery energy storage system (BESS) has a multilayered approach to safety, the thermal runaway, fire, and explosion hazards can be mitigated. Successful implementation of this approach requires cooperation, collaboration, and education across all stakeholder groups to break down these preconceived notions. Much can be learned from the recent BESS fire and explosion events to inform safer design and operation. These events and their contributing factors share many commonalities with historic losses in the hydrocarbon industry. Fire and process safety engineers who have traditionally worked in the hydrocarbon industry can be of immense value to the BESS industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
介绍电网规模电池储能系统的概念和火灾隐患
随着全球不断制定渐进的气候变化目标,可再生能源解决方案需要实现这些目标。其中一个解决方案是大规模锂离子电池(LIB)储能系统,它在确保太阳能和风能发电在电网最需要的时候交付方面处于领先地位。然而,由于最近在美国和澳大利亚发生的事件,人们认为lib存在风险,这对它们未来的成功构成了风险。当电池储能系统(BESS)具有多层安全措施时,可以减轻热失控、火灾和爆炸危险。这种方法的成功实施需要所有利益相关者群体之间的合作、协作和教育,以打破这些先入为主的观念。从最近的BESS火灾和爆炸事件中可以学到很多东西,为更安全的设计和操作提供信息。这些事件及其影响因素与油气行业的历史性损失有许多共同之处。传统上在碳氢化合物行业工作的消防和过程安全工程师对BESS行业具有巨大的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Process Safety Progress
Process Safety Progress 工程技术-工程:化工
CiteScore
2.20
自引率
10.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Process Safety Progress covers process safety for engineering professionals. It addresses such topics as incident investigations/case histories, hazardous chemicals management, hazardous leaks prevention, risk assessment, process hazards evaluation, industrial hygiene, fire and explosion analysis, preventive maintenance, vapor cloud dispersion, and regulatory compliance, training, education, and other areas in process safety and loss prevention, including emerging concerns like plant and/or process security. Papers from the annual Loss Prevention Symposium and other AIChE safety conferences are automatically considered for publication, but unsolicited papers, particularly those addressing process safety issues in emerging technologies and industries are encouraged and evaluated equally.
期刊最新文献
Numerical study of failure modes of hazardous material tanks exposed to fire accidents in the process industry So, you cannot vent: A deep dive into other explosion protection methods Risk and consequence analysis of ammonia storage units in a nuclear fuel cycle facility Diagnosing electrostatic problems and hazards in industrial processes: Case studies Numerical simulation study on propane gas leakage and diffusion law in slope terrain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1