{"title":"System Identification Framework for Modeling of Static Creep and Dynamic Creep Behavior of Dense-Graded Asphalt Mixtures","authors":"Manoj K G","doi":"10.1177/03611981231199476","DOIUrl":null,"url":null,"abstract":"The response of two dense-graded asphalt concrete (AC) mixtures under static and dynamic creep tests conducted in compression is modeled using the principles of the system identification framework in this study. The AC materials under static and dynamic creep loading conditions exhibit complex behavior patterns such as history dependency, plasticity, and temperature dependency. It is desired to formulate a constitutive model describing these complex phenomena. The empirical approach is outside the scope of this study. A viscoelastic continuum damage model requires individual experimentation to characterize linear and damage behavior. A viscoplastic model requires incremental deviator stress for plastic deformation. Both static and dynamic creep tests do not satisfy this condition. Therefore, the “system identification” approach is used in this study. Two methods of system identification approach—that is, black box and grey box modeling—are adopted to characterize static and dynamic creep behavior of AC. Of these two models under consideration, the black box models were versatile in modeling complex loading situations with a high degree of accuracy but lacked physical interpretation. While the grey box models have a physical interpretation, they are not as versatile as black box models.","PeriodicalId":23279,"journal":{"name":"Transportation Research Record","volume":"130 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231199476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The response of two dense-graded asphalt concrete (AC) mixtures under static and dynamic creep tests conducted in compression is modeled using the principles of the system identification framework in this study. The AC materials under static and dynamic creep loading conditions exhibit complex behavior patterns such as history dependency, plasticity, and temperature dependency. It is desired to formulate a constitutive model describing these complex phenomena. The empirical approach is outside the scope of this study. A viscoelastic continuum damage model requires individual experimentation to characterize linear and damage behavior. A viscoplastic model requires incremental deviator stress for plastic deformation. Both static and dynamic creep tests do not satisfy this condition. Therefore, the “system identification” approach is used in this study. Two methods of system identification approach—that is, black box and grey box modeling—are adopted to characterize static and dynamic creep behavior of AC. Of these two models under consideration, the black box models were versatile in modeling complex loading situations with a high degree of accuracy but lacked physical interpretation. While the grey box models have a physical interpretation, they are not as versatile as black box models.
期刊介绍:
Transportation Research Record: Journal of the Transportation Research Board is one of the most cited and prolific transportation journals in the world, offering unparalleled depth and breadth in the coverage of transportation-related topics. The TRR publishes approximately 70 issues annually of outstanding, peer-reviewed papers presenting research findings in policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more, for all modes of transportation. This site provides electronic access to a full compilation of papers since the 1996 series.