{"title":"Design and simulation of small-sized antenna in microwave transmission method for water content measurement instrument","authors":"huiqin jia, dan-dan Wan, Jia-Cheng Zhou, Yi Wei","doi":"10.1177/00202940231199133","DOIUrl":null,"url":null,"abstract":"Herein, the microwave transmission method is proposed that demonstrates such advantages as non-invasiveness, excellent penetration performance, and fast detection. As a key component of the microwave method water content measurement instrument, the antenna is required to have a smaller radiation size than the inner diameter of the oil pipe. To address this technical challenge, a small-sized microwave projection method based on water content measurement antenna is designed in this study for the water content measurement of oil-water mixtures in downhole pipelines. Also, the half-cut antenna with a size of [Formula: see text] is proposed to operate in the frequency band of 2–6 GHz (The measured gain of the antenna varies from 2.48 dBi to 4.98 dBi). Then, the designed half-cut antenna is applied to the established water-content test environment for analysis as to the relationship between water content and the variation in transmission coefficient of the half-cut antenna. According to the test results, the relative water content error is about 0.31% between the simulation and measured results for the transmission coefficient [Formula: see text] in the range of 0%–30%, while that is about 0.16% for the transmission coefficient [Formula: see text] in the range of 40%–100%. The experimental results can be extended to the measurement of the part with high water content of the oil-water mixture in the pipeline, which provides a practical reference for field tests and basic research.","PeriodicalId":49849,"journal":{"name":"Measurement & Control","volume":"14 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231199133","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, the microwave transmission method is proposed that demonstrates such advantages as non-invasiveness, excellent penetration performance, and fast detection. As a key component of the microwave method water content measurement instrument, the antenna is required to have a smaller radiation size than the inner diameter of the oil pipe. To address this technical challenge, a small-sized microwave projection method based on water content measurement antenna is designed in this study for the water content measurement of oil-water mixtures in downhole pipelines. Also, the half-cut antenna with a size of [Formula: see text] is proposed to operate in the frequency band of 2–6 GHz (The measured gain of the antenna varies from 2.48 dBi to 4.98 dBi). Then, the designed half-cut antenna is applied to the established water-content test environment for analysis as to the relationship between water content and the variation in transmission coefficient of the half-cut antenna. According to the test results, the relative water content error is about 0.31% between the simulation and measured results for the transmission coefficient [Formula: see text] in the range of 0%–30%, while that is about 0.16% for the transmission coefficient [Formula: see text] in the range of 40%–100%. The experimental results can be extended to the measurement of the part with high water content of the oil-water mixture in the pipeline, which provides a practical reference for field tests and basic research.
期刊介绍:
Measurement and Control publishes peer-reviewed practical and technical research and news pieces from both the science and engineering industry and academia. Whilst focusing more broadly on topics of relevance for practitioners in instrumentation and control, the journal also includes updates on both product and business announcements and information on technical advances.