A nonlocal strain gradient theory for wave propagation analysis in transversely isotropic elastic medium

Do Xuan Tung
{"title":"A nonlocal strain gradient theory for wave propagation analysis in transversely isotropic elastic medium","authors":"Do Xuan Tung","doi":"10.1142/s2424913023500029","DOIUrl":null,"url":null,"abstract":"This paper has the objective of studying the propagation of surface waves in a transversely isotropic medium based on nonlocal strain gradient theory (NSGT). A characteristics equation for the existence of surface waves is discussed. This equation could be easily reduced to the ones of the gradient strain theory, nonlocal theory and classical theory. It has also been concluded that there exist escape frequency and cut-off frequency for the wave propagating in size-dependent materials based on the NSGT. Dispersion equation for the propagation of Rayleigh-type waves at the free surface has been derived. The effect of the nonlocal parameter, the strain gradient parameter on the Rayleigh wave propagation is considered through some numerical examples.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424913023500029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper has the objective of studying the propagation of surface waves in a transversely isotropic medium based on nonlocal strain gradient theory (NSGT). A characteristics equation for the existence of surface waves is discussed. This equation could be easily reduced to the ones of the gradient strain theory, nonlocal theory and classical theory. It has also been concluded that there exist escape frequency and cut-off frequency for the wave propagating in size-dependent materials based on the NSGT. Dispersion equation for the propagation of Rayleigh-type waves at the free surface has been derived. The effect of the nonlocal parameter, the strain gradient parameter on the Rayleigh wave propagation is considered through some numerical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
横向各向同性弹性介质中波传播分析的非局部应变梯度理论
本文基于非局部应变梯度理论(NSGT)研究了表面波在横向各向同性介质中的传播。讨论了表面波存在的特征方程。该方程可简化为梯度应变理论、非局部理论和经典理论。基于NSGT还得出了波在尺寸相关材料中传播存在逃逸频率和截止频率的结论。推导了瑞利波在自由表面传播的色散方程。通过算例分析了非局部参数、应变梯度参数对瑞利波传播的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Micromechanics and Molecular Physics
Journal of Micromechanics and Molecular Physics Materials Science-Polymers and Plastics
CiteScore
3.30
自引率
0.00%
发文量
27
期刊最新文献
Computational study of substituent effects on Molecular structure, vibrational and electronic properties of Fluorene molecule using density functional theory. Thermodynamical applications in Teleparallel Tachyonic model Topological characterization of three classes of complex networks and their graphical representation and Analysis A Computational Study on Buckling Strength of Pressurized Submarine Pressure Hull Structures under Combined Static Load and Asymmetric Impact Load Analyzing Polycyclic Aromatic Hydrocarbons using Topological Indices and QSPR Analysis to Reveal Molecular Complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1