{"title":"Symmetry-resolved entanglement: general considerations, calculation from correlation functions, and bounds for symmetry-protected topological phases","authors":"Kyle Monkman, Jesko Sirker","doi":"10.1088/1751-8121/ad086d","DOIUrl":null,"url":null,"abstract":"Abstract We discuss some general properties of the symmetry-resolved entanglement entropy in systems with particle number conservation. Using these general results, we describe how to obtain bounds on the entanglement components from correlation functions in Gaussian systems. We introduce majorization as an important tool to derive entanglement bounds. As an application, we derive lower bounds both for the number and the configurational entropy for chiral and Cn-symmetric topological phases. In some cases, our considerations also lead to an improvement of the previously known lower bounds for the entanglement entropy in such systems.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad086d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We discuss some general properties of the symmetry-resolved entanglement entropy in systems with particle number conservation. Using these general results, we describe how to obtain bounds on the entanglement components from correlation functions in Gaussian systems. We introduce majorization as an important tool to derive entanglement bounds. As an application, we derive lower bounds both for the number and the configurational entropy for chiral and Cn-symmetric topological phases. In some cases, our considerations also lead to an improvement of the previously known lower bounds for the entanglement entropy in such systems.