TTA-GEP: Terrain Traversability Analysis with Geometry and Environmental Perception for the Path Planning of Planetary Rovers

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2023-10-31 DOI:10.1155/2023/7147168
Li Yang, Chao Liang, Ximing He, Dengyang Zhao
{"title":"TTA-GEP: Terrain Traversability Analysis with Geometry and Environmental Perception for the Path Planning of Planetary Rovers","authors":"Li Yang, Chao Liang, Ximing He, Dengyang Zhao","doi":"10.1155/2023/7147168","DOIUrl":null,"url":null,"abstract":"Terrain traversability analysis (TTA), the key to the navigation of planetary rovers, is significant to the safety of the rover. Therefore, owing to its complexity, the Martian terrain is worth analysing comprehensively based on the terrain variability and hazard level. In this work, we propose a novel method for terrain traversability analysis for the path planning of planetary rovers by integrating Martian terrain geometry features with terrain semantic information, which includes geometry and environmental perception (GEP). Specifically, we deploy semantic segmentation to classify common terrain types, such as rocks, bedrocks, and sand, obtaining semantic information as one part of terrain traversability analysis at the same time. Simultaneously, the point cloud is generated by using binocular images from the planetary rover navigation camera (Navcam) to construct a 2.5D elevation map of the environment to analyse the geometric characteristics of the terrain. Besides, we implement path planning based on the results of TTA-GEP. Overall, our proposed method improves the performance of the terrain traversability analysis and reduces the risk of planetary rovers while detecting in an unstructured environment.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7147168","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Terrain traversability analysis (TTA), the key to the navigation of planetary rovers, is significant to the safety of the rover. Therefore, owing to its complexity, the Martian terrain is worth analysing comprehensively based on the terrain variability and hazard level. In this work, we propose a novel method for terrain traversability analysis for the path planning of planetary rovers by integrating Martian terrain geometry features with terrain semantic information, which includes geometry and environmental perception (GEP). Specifically, we deploy semantic segmentation to classify common terrain types, such as rocks, bedrocks, and sand, obtaining semantic information as one part of terrain traversability analysis at the same time. Simultaneously, the point cloud is generated by using binocular images from the planetary rover navigation camera (Navcam) to construct a 2.5D elevation map of the environment to analyse the geometric characteristics of the terrain. Besides, we implement path planning based on the results of TTA-GEP. Overall, our proposed method improves the performance of the terrain traversability analysis and reduces the risk of planetary rovers while detecting in an unstructured environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于几何和环境感知的行星漫游者路径规划的地形可穿越性分析
地形可穿越性分析是行星探测车导航的关键,对探测车的安全运行具有重要意义。因此,由于其复杂性,火星地形值得根据地形变异性和危险程度进行综合分析。在这项工作中,我们提出了一种新的地形可穿越性分析方法,该方法将火星地形几何特征与地形语义信息(包括几何和环境感知(GEP))相结合,用于行星探测器的路径规划。具体来说,我们利用语义分割对常见的地形类型(如岩石、基岩和沙子)进行分类,同时获得语义信息作为地形可穿越性分析的一部分。同时,利用行星漫游车导航相机(Navcam)的双目图像生成点云,构建2.5D环境高程图,分析地形几何特征。此外,基于TTA-GEP的结果,我们实现了路径规划。总的来说,我们提出的方法提高了地形可穿越性分析的性能,降低了行星探测器在非结构化环境中进行探测时的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Novel Strategy for Hypersonic Vehicle With Complex Distributed No-Fly Zone Constraints Development of Anisogrid Lattice Composite Structures for Fighter Wing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1