{"title":"Strategic Placement of Portable Air Cleaners for Enhanced Aerosol Control in Dental Treatment Rooms: A Computational Fluid Dynamics (CFD) Analysis","authors":"Yanin Rattanatigul, Arpiruk Hokpunna, Pimduen Rungsiyakull, Kullapop Suttiat","doi":"10.1155/2023/2581698","DOIUrl":null,"url":null,"abstract":"Background. Adequate ventilation is imperative for controlling respiratory transmission, particularly in the context of the COVID-19 pandemic. The commercial portable air cleaners have emerged as practical solutions to reduce contaminated aerosols in dental treatment rooms. This study employs computational fluid dynamics (CFD) to assess their impact on airflow dynamics. Methods. Dental treatment room models were constructed using SolidWorks software, encompassing two distinct air conditioner grille orientations (straightening and 45-degree downward directions) and five different positions for the portable air cleaner (two located at the rear left/right of the dental unit and three at the foot end of the dental unit—center, left, and right corners). The study examined alterations in airflow direction and residual aerosol concentrations using ANSYS Fluent software. Results. The incorporation of portable air cleaners in dental treatment rooms significantly reduced aerosol levels across all model configurations. Notably, the placement of the portable air cleaner emerged as a critical factor influencing airflow patterns. In models with straightening and 45-degree downward air conditioner grille orientations, optimal positioning was near the operating field and at the foot end of the dental chair, respectively. Conclusion. This investigation highlights the pivotal role of strategic portable air cleaner placement in dental treatment rooms for effective aerosol removal. Placing the air cleaner near the operating field or at the foot end of the dental chair not only improved airflow patterns but also enhanced aerosol removal efficiency, ultimately promoting superior air quality within dental treatment environments.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"115 8","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2581698","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background. Adequate ventilation is imperative for controlling respiratory transmission, particularly in the context of the COVID-19 pandemic. The commercial portable air cleaners have emerged as practical solutions to reduce contaminated aerosols in dental treatment rooms. This study employs computational fluid dynamics (CFD) to assess their impact on airflow dynamics. Methods. Dental treatment room models were constructed using SolidWorks software, encompassing two distinct air conditioner grille orientations (straightening and 45-degree downward directions) and five different positions for the portable air cleaner (two located at the rear left/right of the dental unit and three at the foot end of the dental unit—center, left, and right corners). The study examined alterations in airflow direction and residual aerosol concentrations using ANSYS Fluent software. Results. The incorporation of portable air cleaners in dental treatment rooms significantly reduced aerosol levels across all model configurations. Notably, the placement of the portable air cleaner emerged as a critical factor influencing airflow patterns. In models with straightening and 45-degree downward air conditioner grille orientations, optimal positioning was near the operating field and at the foot end of the dental chair, respectively. Conclusion. This investigation highlights the pivotal role of strategic portable air cleaner placement in dental treatment rooms for effective aerosol removal. Placing the air cleaner near the operating field or at the foot end of the dental chair not only improved airflow patterns but also enhanced aerosol removal efficiency, ultimately promoting superior air quality within dental treatment environments.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.