Deep Learning for Precise Robot Position Prediction in Logistics

Chang Che, Bo Liu, Shulin Li, Jiaxin Huang, Hao Hu
{"title":"Deep Learning for Precise Robot Position Prediction in Logistics","authors":"Chang Che, Bo Liu, Shulin Li, Jiaxin Huang, Hao Hu","doi":"10.53469/jtpes.2023.03(10).05","DOIUrl":null,"url":null,"abstract":"This study presents an interdisciplinary investigation at the nexus of mechanical engineering and computer science, aimed at advancing the field of logistics automation. In response to the escalating demands of global cargo transportation, the integration of these disciplines assumes paramount importance. Conducted within the domain of Dortmund University of Technology’s Material Flow and Warehousing Chair, this research focuses on the precise control of robots, a task contingent on accurate positional information. Leveraging a controlled internal logistics precinct, the study delves into the transformation of raw sensor data, comprising accelerometers, gyroscopes, and magnetometers, into precise position predictions. This process entails meticulous data preprocessing, encompassing synchronization and calibration procedures, yielding crucial parameters such as absolute velocity and accelerations along both parallel and perpendicular axes. The study employs deep learning, specifically a 2D Convolutional Neural Network (2D-CNN), for predictive modeling. This architecture excels in extracting intricate spatial features from sensor data. Training is conducted under the guidance of an Asymmetric Gaussian loss function, custom-tailored to accommodate the idiosyn- crasies of real-world sensor data. The results evince the efficacy of this approach, evidenced by remarkably low mean squared errors in predicting robot positions. Beyond its immediate applications in logistics automation, this research underscores the potential of interdisciplinary collaboration in addressing complex sensor data challenges.","PeriodicalId":489516,"journal":{"name":"Journal of Theory and Practice of Engineering Science","volume":" 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theory and Practice of Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53469/jtpes.2023.03(10).05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This study presents an interdisciplinary investigation at the nexus of mechanical engineering and computer science, aimed at advancing the field of logistics automation. In response to the escalating demands of global cargo transportation, the integration of these disciplines assumes paramount importance. Conducted within the domain of Dortmund University of Technology’s Material Flow and Warehousing Chair, this research focuses on the precise control of robots, a task contingent on accurate positional information. Leveraging a controlled internal logistics precinct, the study delves into the transformation of raw sensor data, comprising accelerometers, gyroscopes, and magnetometers, into precise position predictions. This process entails meticulous data preprocessing, encompassing synchronization and calibration procedures, yielding crucial parameters such as absolute velocity and accelerations along both parallel and perpendicular axes. The study employs deep learning, specifically a 2D Convolutional Neural Network (2D-CNN), for predictive modeling. This architecture excels in extracting intricate spatial features from sensor data. Training is conducted under the guidance of an Asymmetric Gaussian loss function, custom-tailored to accommodate the idiosyn- crasies of real-world sensor data. The results evince the efficacy of this approach, evidenced by remarkably low mean squared errors in predicting robot positions. Beyond its immediate applications in logistics automation, this research underscores the potential of interdisciplinary collaboration in addressing complex sensor data challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物流中机器人精确位置预测的深度学习
本研究在机械工程和计算机科学的联系上提出了一个跨学科的调查,旨在推进物流自动化领域。为了应对全球货物运输不断升级的需求,这些学科的整合具有至关重要的意义。在多特蒙德科技大学的物料流和仓储椅领域内进行的这项研究侧重于机器人的精确控制,这是一项基于准确位置信息的任务。利用受控的内部物流区域,该研究深入研究了原始传感器数据(包括加速度计、陀螺仪和磁力计)转化为精确的位置预测。这个过程需要细致的数据预处理,包括同步和校准程序,产生关键参数,如沿平行和垂直轴的绝对速度和加速度。该研究采用深度学习,特别是2D卷积神经网络(2D- cnn)进行预测建模。该架构在从传感器数据中提取复杂的空间特征方面表现出色。训练是在非对称高斯损失函数的指导下进行的,该函数是为适应真实世界传感器数据的特殊性而定制的。结果证明了这种方法的有效性,预测机器人位置的均方误差非常低。除了在物流自动化中的直接应用之外,这项研究还强调了跨学科合作在解决复杂传感器数据挑战方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review on Mechanical Automation Control System Enhanced Heart Attack Prediction Using eXtreme Gradient Boosting Feasibility Study of UHPC Reinforced Masonry Structure Review of Research on Nuclear Signal Pulse Shaping Analysis on Machining Precision Control of Mechanical Die
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1