Application of advanced machine learning algorithms and geospatial techniques for groundwater potential zone mapping in Gambela Plain, Ethiopia

IF 2.6 4区 环境科学与生态学 Q2 WATER RESOURCES Hydrology Research Pub Date : 2023-09-25 DOI:10.2166/nh.2023.083
Tesema Kebede Seifu, Kidist Demessie Eshetu, Tekalegn Ayele Woldesenbet, Taye Alemayehu, Tenalem Ayenew
{"title":"Application of advanced machine learning algorithms and geospatial techniques for groundwater potential zone mapping in Gambela Plain, Ethiopia","authors":"Tesema Kebede Seifu, Kidist Demessie Eshetu, Tekalegn Ayele Woldesenbet, Taye Alemayehu, Tenalem Ayenew","doi":"10.2166/nh.2023.083","DOIUrl":null,"url":null,"abstract":"Groundwater availability is one of the key anxieties in most semi-arid regions of Ethiopia. The purpose of this study was to investigate the groundwater potential zone map of the alluvial plain of Gambela. The study applied analytic hierarchy process (AHP) models with four different machine learning algorithms: random forest classifier (RFC), gradient boosting classifier (GBC), decision tree classifier (DTC), and K-neighbor classifier (KNC). The features that are used as predictors include geology, geomorphology, slope, soil, lineament density, drainage density, land use and land cover (LULC), normalized difference vegetation index (NDVI), topographic wetness index (TWI), topographic roughness index (TRI), and rainfall. The final output of the groundwater potential zone was classified as low, moderate, high, and very high potential zones. The authentication through receiver operating curve (ROC) shows 78.2, 93.4, 92.5, 72.4, and 87.7% values of area under the curve (AUC) for AHP, RFC, GBC, DTC, and KNC, respectively. The results show that RFC and GBC are the best GWPZ map estimator. The study also shows that rainfall and geomorphology are the primary factors influencing the GWPZ. The outcome might promote improved management alternatives in other areas of the country with a comparable climate.","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"26 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/nh.2023.083","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater availability is one of the key anxieties in most semi-arid regions of Ethiopia. The purpose of this study was to investigate the groundwater potential zone map of the alluvial plain of Gambela. The study applied analytic hierarchy process (AHP) models with four different machine learning algorithms: random forest classifier (RFC), gradient boosting classifier (GBC), decision tree classifier (DTC), and K-neighbor classifier (KNC). The features that are used as predictors include geology, geomorphology, slope, soil, lineament density, drainage density, land use and land cover (LULC), normalized difference vegetation index (NDVI), topographic wetness index (TWI), topographic roughness index (TRI), and rainfall. The final output of the groundwater potential zone was classified as low, moderate, high, and very high potential zones. The authentication through receiver operating curve (ROC) shows 78.2, 93.4, 92.5, 72.4, and 87.7% values of area under the curve (AUC) for AHP, RFC, GBC, DTC, and KNC, respectively. The results show that RFC and GBC are the best GWPZ map estimator. The study also shows that rainfall and geomorphology are the primary factors influencing the GWPZ. The outcome might promote improved management alternatives in other areas of the country with a comparable climate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用先进的机器学习算法和地理空间技术在埃塞俄比亚甘贝拉平原的地下水潜势区测绘
地下水的可用性是埃塞俄比亚大多数半干旱地区的关键焦虑之一。本研究的目的是研究甘贝拉冲积平原地下水潜势带图。该研究将层次分析法(AHP)模型应用于四种不同的机器学习算法:随机森林分类器(RFC)、梯度增强分类器(GBC)、决策树分类器(DTC)和k -邻居分类器(KNC)。用于预测的特征包括地质、地貌、坡度、土壤、地形密度、排水密度、土地利用和土地覆盖(LULC)、归一化植被指数(NDVI)、地形湿度指数(TWI)、地形粗糙度指数(TRI)和降雨量。将最终产出的地下水电位区划分为低、中、高、极高电位区。通过受试者工作曲线(ROC)验证AHP、RFC、GBC、DTC和KNC的曲线下面积(AUC)分别为78.2、93.4、92.5、72.4和87.7%。结果表明,RFC和GBC是最好的地下水潜势带(GWPZ)图估计方法。研究还表明,降雨和地貌是影响GWPZ的主要因素。其结果可能促进在该国气候类似的其他地区改进管理办法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrology Research
Hydrology Research WATER RESOURCES-
CiteScore
5.00
自引率
7.40%
发文量
0
审稿时长
3.8 months
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
期刊最新文献
Evaluation of water shortage and instream flows of shared rivers in South Korea according to the dam operations in North Korea Video velocity measurement: A two-stage flow velocity prediction method based on deep learning An approach for flood flow prediction utilizing new hybrids of ANFIS with several optimization techniques: a case study Identification of hydrologically homogenous watersheds and climate-vegetation dynamics in the Blue Nile Basin of Ethiopia Attribution discernment of climate change and human interventions to runoff decline in Huangshui River Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1