Suyang Yao, Yanxi Pu, Lulu Ren, Manli Cao, Baohui Ye
{"title":"Photooxidative Dehydrogenation of Chiral Ir (III) Amino Acid Complexes Based on [Λ-Ir(ppy)2(MeCN)2](PF6)","authors":"Suyang Yao, Yanxi Pu, Lulu Ren, Manli Cao, Baohui Ye","doi":"10.3390/inorganics11100380","DOIUrl":null,"url":null,"abstract":"Octahedral chiral-at-metal Ir(III) complexes exhibit excellent structural stability and stereoselectivity in asymmetric synthesis. Selectively oxidative dehydrogenation of amino acids could be achieved by exploiting such complexes as chiral templates. The obtaining stable imine complexes can then be utilized in nucleophilic additions to generate corresponding chiral amine compounds. In this study, a conveniently synthesized [Λ-Ir(ppy)2(MeCN)2](PF6) chiral complex (ppy is 2-phenylpyridine) was utilized as a chiral template. A series of chiral amino acid complexes Λ-[Ir(ppy)2(D/L-AA)] (AA is amino acid) were prepared in high yield and optical purity. The above amino acid complexes were then oxidized to their corresponding imino acid complexes Λ-[Ir(ppy)2(AA-2H)] under visible light. All these complexes exhibited high selectivity during the dehydrogenation process without the formation of C-N bond coupling byproducts. The photooxidative dehydrogenation rates of these complexes were studied, which show that D-configured amino acids exhibited faster dehydrogenation rates when using the Λ-configured complex as a chiral template and the substitution of electron-donating or bulky groups in the N-α position of the amino acid decreased their dehydrogenation rates. The crystal structures of Λ-Ir(ppy)2(D-Thr) (Thr is threonine) and its dehydrogenated complex Λ-Ir(ppy)2(Thr-2H) indicate the process of photooxidative dehydrogenation and the configuration stability of metal center throughout the process.","PeriodicalId":13580,"journal":{"name":"Inorganics (Basel)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inorganics11100380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Octahedral chiral-at-metal Ir(III) complexes exhibit excellent structural stability and stereoselectivity in asymmetric synthesis. Selectively oxidative dehydrogenation of amino acids could be achieved by exploiting such complexes as chiral templates. The obtaining stable imine complexes can then be utilized in nucleophilic additions to generate corresponding chiral amine compounds. In this study, a conveniently synthesized [Λ-Ir(ppy)2(MeCN)2](PF6) chiral complex (ppy is 2-phenylpyridine) was utilized as a chiral template. A series of chiral amino acid complexes Λ-[Ir(ppy)2(D/L-AA)] (AA is amino acid) were prepared in high yield and optical purity. The above amino acid complexes were then oxidized to their corresponding imino acid complexes Λ-[Ir(ppy)2(AA-2H)] under visible light. All these complexes exhibited high selectivity during the dehydrogenation process without the formation of C-N bond coupling byproducts. The photooxidative dehydrogenation rates of these complexes were studied, which show that D-configured amino acids exhibited faster dehydrogenation rates when using the Λ-configured complex as a chiral template and the substitution of electron-donating or bulky groups in the N-α position of the amino acid decreased their dehydrogenation rates. The crystal structures of Λ-Ir(ppy)2(D-Thr) (Thr is threonine) and its dehydrogenated complex Λ-Ir(ppy)2(Thr-2H) indicate the process of photooxidative dehydrogenation and the configuration stability of metal center throughout the process.