Xuening Wang, Ju Chen, Hongli Chen, Yipeng An, Shi-Jing Gong
{"title":"Control of band polarity in two-dimensional VX2 (X = S, Se, and Te)","authors":"Xuening Wang, Ju Chen, Hongli Chen, Yipeng An, Shi-Jing Gong","doi":"10.1063/5.0172347","DOIUrl":null,"url":null,"abstract":"Bipolar magnetic semiconductor (BMS) has special electronic structures; i.e., its conduction band minimum (CBM) and valence band maximum (VBM) are completely spin-polarized in opposite directions. In this work, the band structures of 2H-VX2 (X = S, Se, and Te) are examined through first-principles calculations, and the results show that both 2H-VS2 and 2H-VSe2 are BMSs, while 2H-VTe2 is a unipolar magnetic semiconductor (UMS); i.e., its CBM and VBM show the same spin direction. Most interestingly, we find that electronic orbitals near the Fermi level of 2H-VX2 are occupied by dz2 and dxy orbitals, which can be effectively modulated by the biaxial strain. With appropriate strain modulations, 2H-VX2 can be BMS, UMS, or half-metal (HM). Our investigation reveals strain effects on the band structure of 2H-VX2, which greatly enhances their significance in spintronics.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"25 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0172347","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Bipolar magnetic semiconductor (BMS) has special electronic structures; i.e., its conduction band minimum (CBM) and valence band maximum (VBM) are completely spin-polarized in opposite directions. In this work, the band structures of 2H-VX2 (X = S, Se, and Te) are examined through first-principles calculations, and the results show that both 2H-VS2 and 2H-VSe2 are BMSs, while 2H-VTe2 is a unipolar magnetic semiconductor (UMS); i.e., its CBM and VBM show the same spin direction. Most interestingly, we find that electronic orbitals near the Fermi level of 2H-VX2 are occupied by dz2 and dxy orbitals, which can be effectively modulated by the biaxial strain. With appropriate strain modulations, 2H-VX2 can be BMS, UMS, or half-metal (HM). Our investigation reveals strain effects on the band structure of 2H-VX2, which greatly enhances their significance in spintronics.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces