Ensemble-Based Short Text Similarity: An Easy Approach for Multilingual Datasets Using Transformers and WordNet in Real-World Scenarios

IF 3.7 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data and Cognitive Computing Pub Date : 2023-09-25 DOI:10.3390/bdcc7040158
Isabella Gagliardi, Maria Teresa Artese
{"title":"Ensemble-Based Short Text Similarity: An Easy Approach for Multilingual Datasets Using Transformers and WordNet in Real-World Scenarios","authors":"Isabella Gagliardi, Maria Teresa Artese","doi":"10.3390/bdcc7040158","DOIUrl":null,"url":null,"abstract":"When integrating data from different sources, there are problems of synonymy, different languages, and concepts of different granularity. This paper proposes a simple yet effective approach to evaluate the semantic similarity of short texts, especially keywords. The method is capable of matching keywords from different sources and languages by exploiting transformers and WordNet-based methods. Key features of the approach include its unsupervised pipeline, mitigation of the lack of context in keywords, scalability for large archives, support for multiple languages and real-world scenarios adaptation capabilities. The work aims to provide a versatile tool for different cultural heritage archives without requiring complex customization. The paper aims to explore different approaches to identifying similarities in 1- or n-gram tags, evaluate and compare different pre-trained language models, and define integrated methods to overcome limitations. Tests to validate the approach have been conducted using the QueryLab portal, a search engine for cultural heritage archives, to evaluate the proposed pipeline.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":"19 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7040158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

When integrating data from different sources, there are problems of synonymy, different languages, and concepts of different granularity. This paper proposes a simple yet effective approach to evaluate the semantic similarity of short texts, especially keywords. The method is capable of matching keywords from different sources and languages by exploiting transformers and WordNet-based methods. Key features of the approach include its unsupervised pipeline, mitigation of the lack of context in keywords, scalability for large archives, support for multiple languages and real-world scenarios adaptation capabilities. The work aims to provide a versatile tool for different cultural heritage archives without requiring complex customization. The paper aims to explore different approaches to identifying similarities in 1- or n-gram tags, evaluate and compare different pre-trained language models, and define integrated methods to overcome limitations. Tests to validate the approach have been conducted using the QueryLab portal, a search engine for cultural heritage archives, to evaluate the proposed pipeline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集成的短文本相似度:在真实场景中使用transformer和WordNet的多语言数据集的一种简单方法
在集成来自不同来源的数据时,存在同义词、不同语言和不同粒度概念的问题。本文提出了一种简单而有效的短文本,尤其是关键词语义相似度评价方法。该方法利用变形器和基于wordnet的方法,能够匹配来自不同来源和语言的关键字。该方法的主要特点包括无监督的管道、减轻关键字缺乏上下文的问题、大型档案的可扩展性、支持多种语言和现实场景适应能力。这项工作旨在为不同的文化遗产档案提供一个多功能的工具,而不需要复杂的定制。本文旨在探索识别1元或n元标签相似性的不同方法,评估和比较不同的预训练语言模型,并定义集成方法以克服局限性。为了验证这一方法,已经使用QueryLab门户网站(一个文化遗产档案搜索引擎)进行了测试,以评估拟议的管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data and Cognitive Computing
Big Data and Cognitive Computing Business, Management and Accounting-Management Information Systems
CiteScore
7.10
自引率
8.10%
发文量
128
审稿时长
11 weeks
期刊最新文献
A Survey of Incremental Deep Learning for Defect Detection in Manufacturing BNMI-DINA: A Bayesian Cognitive Diagnosis Model for Enhanced Personalized Learning Semantic Similarity of Common Verbal Expressions in Older Adults through a Pre-Trained Model Knowledge-Based and Generative-AI-Driven Pedagogical Conversational Agents: A Comparative Study of Grice’s Cooperative Principles and Trust Distributed Bayesian Inference for Large-Scale IoT Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1