Detecting semi-arid forest decline using time series of Landsat data

IF 3.7 4区 地球科学 Q2 REMOTE SENSING European Journal of Remote Sensing Pub Date : 2023-09-25 DOI:10.1080/22797254.2023.2260549
Elham Shafeian, Fabian Ewald Fassnacht, Hooman Latifi
{"title":"Detecting semi-arid forest decline using time series of Landsat data","authors":"Elham Shafeian, Fabian Ewald Fassnacht, Hooman Latifi","doi":"10.1080/22797254.2023.2260549","DOIUrl":null,"url":null,"abstract":"Detecting forest decline is crucial for effective forest management in arid and semi-arid regions. Remote sensing using satellite image time series is useful for identifying reduced photosynthetic activity caused by defoliation. However, current studies face limitations in detecting forest decline in sparse semi-arid forests. In this study, three Landsat time-series-based approaches were used to distinguish non-declining and declining forest patches in the Zagros forests. The random forest was the most accurate approach, followed by anomaly detection and the Sen’s slope approach, with an overall accuracy of 0.75 (kappa = 0.50), 0.65 (kappa = 0.30), and 0.64 (kappa = 0.30), respectively. The classification results were unaffected by the Landsat acquisition times, indicating that rather, environmental variables may have contributed to the separation of declining and non-declining areas and not the remotely sensed spectral signal of the trees. We conclude that identifying declining forest patches in semi-arid regions using Landsat data is challenging. This difficulty arises from weak vegetation signals caused by limited canopy cover before a bright soil background, which makes it challenging to detect modest degradation signals. Additional environmental variables may be necessary to compensate for these limitations.","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"8 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22797254.2023.2260549","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting forest decline is crucial for effective forest management in arid and semi-arid regions. Remote sensing using satellite image time series is useful for identifying reduced photosynthetic activity caused by defoliation. However, current studies face limitations in detecting forest decline in sparse semi-arid forests. In this study, three Landsat time-series-based approaches were used to distinguish non-declining and declining forest patches in the Zagros forests. The random forest was the most accurate approach, followed by anomaly detection and the Sen’s slope approach, with an overall accuracy of 0.75 (kappa = 0.50), 0.65 (kappa = 0.30), and 0.64 (kappa = 0.30), respectively. The classification results were unaffected by the Landsat acquisition times, indicating that rather, environmental variables may have contributed to the separation of declining and non-declining areas and not the remotely sensed spectral signal of the trees. We conclude that identifying declining forest patches in semi-arid regions using Landsat data is challenging. This difficulty arises from weak vegetation signals caused by limited canopy cover before a bright soil background, which makes it challenging to detect modest degradation signals. Additional environmental variables may be necessary to compensate for these limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用时间序列Landsat数据探测半干旱森林衰退
监测森林衰退对干旱和半干旱地区的有效森林管理至关重要。利用卫星影像时间序列进行遥感对识别因落叶引起的光合活性降低是有用的。然而,目前的研究在探测稀疏半干旱森林的森林衰退方面存在局限性。在本研究中,采用三种基于Landsat时间序列的方法来区分Zagros森林的非退化和退化森林斑块。随机森林是最准确的方法,其次是异常检测和Sen’s slope方法,总体精度分别为0.75 (kappa = 0.50)、0.65 (kappa = 0.30)和0.64 (kappa = 0.30)。分类结果不受Landsat采集时间的影响,这表明环境变量可能对树木的下降和非下降区域的分离起了作用,而不是遥感光谱信号。我们的结论是,利用Landsat数据识别半干旱地区的森林斑块是具有挑战性的。这一困难是由于在明亮的土壤背景之前,有限的冠层覆盖造成了微弱的植被信号,这使得检测适度的退化信号具有挑战性。可能需要额外的环境变量来弥补这些限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
2.50%
发文量
51
审稿时长
>12 weeks
期刊介绍: European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include: -land use/land cover -geology, earth and geoscience -agriculture and forestry -geography and landscape -ecology and environmental science -support to land management -hydrology and water resources -atmosphere and meteorology -oceanography -new sensor systems, missions and software/algorithms -pre processing/calibration -classifications -time series/change analysis -data integration/merging/fusion -image processing and analysis -modelling European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.
期刊最新文献
Spatial-temporal response of the regional ecological quality to urban settlement development Impact of atmospheric vertical profile on hyperspectral simulations over bright desert pseudo-invariant calibration site Usable observations over Europe: evaluation of compositing windows for Landsat and Sentinel-2 time series Characterizing the variability and trend of rainfall in central highlands of Abbay Basin, Ethiopia: using IMERG-06 dataset Enhanced large-scale building extraction evaluation: developing a two-level framework using proxy data and building matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1