Parameter Influence on Porous Bleed Performance for Supersonic Turbulent Flows

IF 1.7 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Propulsion and Power Pub Date : 2023-09-25 DOI:10.2514/1.b39236
Julian Giehler, Pierre Grenson, Reynald Bur
{"title":"Parameter Influence on Porous Bleed Performance for Supersonic Turbulent Flows","authors":"Julian Giehler, Pierre Grenson, Reynald Bur","doi":"10.2514/1.b39236","DOIUrl":null,"url":null,"abstract":"Porous bleed systems are a common technique to control shock-/boundary-layer interactions and/or supersonic boundary layers. However, the influence of various design parameters is still unknown. Even though porous bleed models are required to minimize the costs of the design process, they often do not include parameter effects. In the present study, the effect of the plate length, the hole diameter, the porosity level, the thickness-to-diameter ratio, and the stagger angle are investigated by means of three-dimensional Reynolds-averaged Navier–Stokes simulations. The bleed efficiency and the effectiveness in thinning a Mach [Formula: see text] turbulent boundary layer are determined. The findings show a crucial influence of the hole diameter on both the efficiency and effectiveness of the porous bleed. Similar findings are made for the porosity and stagger angle but with a smaller significance. The thickness-to-diameter ratio and plate length are shown to mainly affect the bleed efficiency.","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.b39236","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Porous bleed systems are a common technique to control shock-/boundary-layer interactions and/or supersonic boundary layers. However, the influence of various design parameters is still unknown. Even though porous bleed models are required to minimize the costs of the design process, they often do not include parameter effects. In the present study, the effect of the plate length, the hole diameter, the porosity level, the thickness-to-diameter ratio, and the stagger angle are investigated by means of three-dimensional Reynolds-averaged Navier–Stokes simulations. The bleed efficiency and the effectiveness in thinning a Mach [Formula: see text] turbulent boundary layer are determined. The findings show a crucial influence of the hole diameter on both the efficiency and effectiveness of the porous bleed. Similar findings are made for the porosity and stagger angle but with a smaller significance. The thickness-to-diameter ratio and plate length are shown to mainly affect the bleed efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数对超声速湍流多孔排气性能的影响
多孔排气系统是控制激波/边界层相互作用和/或超音速边界层的常用技术。然而,各种设计参数的影响仍然是未知的。尽管多孔排气模型需要最小化设计过程的成本,但它们通常不包括参数影响。本文采用三维reynolds -average Navier-Stokes模拟方法,研究了板长、孔径、孔隙度、厚径比和错开角等因素对复合材料的影响。确定了引流效率和减薄马赫数紊流边界层的效果[公式:见文]。研究结果表明,孔径对多孔排液的效率和效果都有重要影响。孔隙度和错开角也有类似的结果,但意义较小。厚径比和板长是影响排气效率的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Propulsion and Power
Journal of Propulsion and Power 工程技术-工程:宇航
CiteScore
4.20
自引率
21.10%
发文量
97
审稿时长
6.5 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.
期刊最新文献
Impact of Future Low-Emissions Combustor Technology on Acoustic Scaling Laws Experimental Investigation on Atomization of JP-10 Slurry Jets Containing Boron Nanoparticles Fuel Temperature Effects on Combustion Stability of a High-Pressure Liquid-Fueled Swirl Flame Optimization of Thrust of a Generic X-51 Hypersonic Vehicle Application of Boundary Layer Combustion in High-Mach-Number Scramjets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1