{"title":"Characterization of human chromosomal constitutive heterochromatin.","authors":"A Babu, R S Verma","doi":"10.1139/g86-093","DOIUrl":null,"url":null,"abstract":"<p><p>The constitutive heterochromatin of human chromosomes is evaluated by various selective staining techniques, i.e., CBG, G-11, distamycin A plus 4,6-diamidino-2-phenylindole-2-HCl (DA/DAPI), the fluorochrome D287/170, and Giemsa staining following the treatments with restriction endonucleases AluI and HaeIII. It is suggested that the constitutive heterochromatin could be arbitrarily divided into at least seven types depending on the staining profiles expressed by different regions of C-bands. The pericentromeric C-bands of chromosomes 1, 5, 7, 9, 13-18, and 20-22 consist of more than one type of chromatin, of which chromosome 1 presents the highest degree of heterogeneity. Chromosomes 3 and 4 show relatively less consistent heterogeneous fractions in their C-bands. The C-bands of chromosomes 10, 19, and the Y do not have much heterogeneity but have characteristic patterns with other methods using restriction endonucleases. Chromosomes 2, 6, 8, 11, 12, and X have homogeneous bands stained by the CBG technique only. Among the chromosomes with smaller pericentric C-bands, chromosome 18 shows frequent heteromorphic variants for the size and position (inversions) of the AluI resistant fraction of C-band. The analysis of various types of heterochromatin with respect to specific satellite and nonsatellite DNA sequences suggest that the staining profiles are probably related to sequence diversity.</p>","PeriodicalId":9589,"journal":{"name":"Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie","volume":"28 5","pages":"631-44"},"PeriodicalIF":0.0000,"publicationDate":"1986-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/g86-093","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/g86-093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
The constitutive heterochromatin of human chromosomes is evaluated by various selective staining techniques, i.e., CBG, G-11, distamycin A plus 4,6-diamidino-2-phenylindole-2-HCl (DA/DAPI), the fluorochrome D287/170, and Giemsa staining following the treatments with restriction endonucleases AluI and HaeIII. It is suggested that the constitutive heterochromatin could be arbitrarily divided into at least seven types depending on the staining profiles expressed by different regions of C-bands. The pericentromeric C-bands of chromosomes 1, 5, 7, 9, 13-18, and 20-22 consist of more than one type of chromatin, of which chromosome 1 presents the highest degree of heterogeneity. Chromosomes 3 and 4 show relatively less consistent heterogeneous fractions in their C-bands. The C-bands of chromosomes 10, 19, and the Y do not have much heterogeneity but have characteristic patterns with other methods using restriction endonucleases. Chromosomes 2, 6, 8, 11, 12, and X have homogeneous bands stained by the CBG technique only. Among the chromosomes with smaller pericentric C-bands, chromosome 18 shows frequent heteromorphic variants for the size and position (inversions) of the AluI resistant fraction of C-band. The analysis of various types of heterochromatin with respect to specific satellite and nonsatellite DNA sequences suggest that the staining profiles are probably related to sequence diversity.