Text mining of veterinary forums for epidemiological surveillance supplementation

IF 2.3 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Social Network Analysis and Mining Pub Date : 2023-09-25 DOI:10.1007/s13278-023-01131-7
Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
{"title":"Text mining of veterinary forums for epidemiological surveillance supplementation","authors":"Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves","doi":"10.1007/s13278-023-01131-7","DOIUrl":null,"url":null,"abstract":"Abstract Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand smallholder farming communities within the UK, by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted, with text mining and topic modelling of data in search of common themes, words, and topics found within the text, in addition to temporal analysis through anomaly detection. Results revealed that some of the key areas in pig forum discussions included identification, age management, containment, and breeding and weaning practices. In discussions about poultry farming, a preference for free-range practices was expressed, along with a focus on feeding practices and addressing red mite infestations. Temporal topic modelling revealed an increase in conversations around pig containment and care, as well as poultry equipment maintenance. Moreover, anomaly detection was discovered to be particularly effective for tracking unusual spikes in forum activity, which may suggest new concerns or trends. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter, in addition to location analysis to highlight spatial patterns.","PeriodicalId":21842,"journal":{"name":"Social Network Analysis and Mining","volume":"19 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Network Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13278-023-01131-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand smallholder farming communities within the UK, by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted, with text mining and topic modelling of data in search of common themes, words, and topics found within the text, in addition to temporal analysis through anomaly detection. Results revealed that some of the key areas in pig forum discussions included identification, age management, containment, and breeding and weaning practices. In discussions about poultry farming, a preference for free-range practices was expressed, along with a focus on feeding practices and addressing red mite infestations. Temporal topic modelling revealed an increase in conversations around pig containment and care, as well as poultry equipment maintenance. Moreover, anomaly detection was discovered to be particularly effective for tracking unusual spikes in forum activity, which may suggest new concerns or trends. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter, in addition to location analysis to highlight spatial patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
兽医论坛的文本挖掘用于流行病学监测补充
Web抓取和文本挖掘是公共卫生研究人员常用的计算机科学方法,用于增强传统的流行病学监测。然而,在兽医疾病监测中,这些技术仍处于发展的早期阶段,尚未得到充分利用。本研究通过使用在线文本提取和随后的数据挖掘,探索了整合基于互联网的数据的效用,以更好地了解英国境内的小农农业社区。对牲畜论坛进行网络抓取,对数据进行文本挖掘和主题建模,以搜索文本中发现的共同主题、单词和主题,并通过异常检测进行时间分析。结果显示,生猪论坛讨论的一些关键领域包括鉴定、年龄管理、遏制以及繁殖和断奶实践。在关于家禽养殖的讨论中,人们倾向于自由放养,同时注重饲养方法和解决红螨侵扰问题。时间主题建模显示,围绕猪的围护和护理以及家禽设备维护的对话有所增加。此外,发现异常检测对于跟踪论坛活动中的异常峰值特别有效,这可能表明新的关注点或趋势。互联网数据可以成为辅助传统兽医监测方法的一种非常有效的工具,但对所述数据进行人类验证的要求至关重要。这开辟了研究的道路,通过结合其他动态社交媒体数据,即Twitter,除了位置分析,以突出空间模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Social Network Analysis and Mining
Social Network Analysis and Mining COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
5.70
自引率
14.30%
发文量
141
期刊介绍: Social Network Analysis and Mining (SNAM) is a multidisciplinary journal serving researchers and practitioners in academia and industry. It is the main venue for a wide range of researchers and readers from computer science, network science, social sciences, mathematical sciences, medical and biological sciences, financial, management and political sciences. We solicit experimental and theoretical work on social network analysis and mining using a wide range of techniques from social sciences, mathematics, statistics, physics, network science and computer science. The main areas covered by SNAM include: (1) data mining advances on the discovery and analysis of communities, personalization for solitary activities (e.g. search) and social activities (e.g. discovery of potential friends), the analysis of user behavior in open forums (e.g. conventional sites, blogs and forums) and in commercial platforms (e.g. e-auctions), and the associated security and privacy-preservation challenges; (2) social network modeling, construction of scalable and customizable social network infrastructure, identification and discovery of complex, dynamics, growth, and evolution patterns using machine learning and data mining approaches or multi-agent based simulation; (3) social network analysis and mining for open source intelligence and homeland security. Papers should elaborate on data mining and machine learning or related methods, issues associated to data preparation and pattern interpretation, both for conventional data (usage logs, query logs, document collections) and for multimedia data (pictures and their annotations, multi-channel usage data). Topics include but are not limited to: Applications of social network in business engineering, scientific and medical domains, homeland security, terrorism and criminology, fraud detection, public sector, politics, and case studies.
期刊最新文献
Correction: Public sentiment toward renewable energy in Morocco: opinion mining using a rule-based approach Do users adopt extremist beliefs from exposure to hate subreddits? Analyzing online public opinion on Thailand-China high-speed train and Laos-China railway mega-projects using advanced machine learning for sentiment analysis Semantic overlapping community detection with embedding multi-dimensional relationships and spatial context Survey-credible conversation and sentiment analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1