Acetylsalicylic Acid Promotes Osteogenic Differentiation of Human Dental Pulp Mesenchymal Stem Cells and Regeneration of Alveolar Bone in Experimental Periodontitis Rats
Aishi Song, Wei Wang, Yuying Zhang, Peng Zhou, Jiaxing Li, Jean de Dieu Habimana, Omar Mukama, Wei Xie, Sihao Deng, Shusheng Zhang, Ming Li, Bin Ni, Yabing Tang, Xiao-Xin Yan, Jufang Huang, Zhiyuan Li
{"title":"Acetylsalicylic Acid Promotes Osteogenic Differentiation of Human Dental Pulp Mesenchymal Stem Cells and Regeneration of Alveolar Bone in Experimental Periodontitis Rats","authors":"Aishi Song, Wei Wang, Yuying Zhang, Peng Zhou, Jiaxing Li, Jean de Dieu Habimana, Omar Mukama, Wei Xie, Sihao Deng, Shusheng Zhang, Ming Li, Bin Ni, Yabing Tang, Xiao-Xin Yan, Jufang Huang, Zhiyuan Li","doi":"10.1155/2023/3077814","DOIUrl":null,"url":null,"abstract":"Background. Periodontitis is characterized by bone resorption and periodontal tissue destruction owing to oral microbiota, mechanical stress, and systemic diseases such as diabetes mellitus. Human dental pulp mesenchymal stem cells (hDPMSCs) were analyzed as potential candidates for periodontal tissue regeneration. Acetylsalicylic acid (ASA), also known as aspirin, has been shown to promote osteogenic differentiation of mesenchymal stem cells. We investigated the effect of ASA pretreatment on periodontitis in order to achieve a more appealing prognosis of bone resorption. Methods. The effect of ASA on cell proliferation was detected by the CCK-8 assay, and alkaline phosphatase (ALP) staining, alizarin red staining (ARS), and western blot were used to investigate the effect of different ASA concentrations on hDPMSCs’ osteogenic differentiation and possible signaling pathways. Periodontitis was induced for 4 weeks. Stem cells pretreated with 50 µg/mL of ASA were transplanted into six-week-old male Sprague-Dawley rats by local and systemic injection once a week for two weeks. Four weeks after cell therapy, the rats were sacrificed for sampling to complete the molecular and morphological experiments. Results. In vitro experiments revealed that 50 µg/mL of ASA had a significant effect on cell osteogenic differentiation. That is, when ASA was administered, the MAPK signaling pathway was activated. Notably, further vivo experiments revealed that ASA-hDPMSCs increased the area of bone regeneration and the OPG/RANKL ratio, suppressed TNF-α and IL-1 expression, and promote alveolar bone repair. Conclusion. Our study extends the findings of previous research, firstly demonstrating that the use of ASA-pretreated hDPMSCs offers a novel therapy for the treatment of periodontitis for future clinical application.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"12 9","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3077814","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background. Periodontitis is characterized by bone resorption and periodontal tissue destruction owing to oral microbiota, mechanical stress, and systemic diseases such as diabetes mellitus. Human dental pulp mesenchymal stem cells (hDPMSCs) were analyzed as potential candidates for periodontal tissue regeneration. Acetylsalicylic acid (ASA), also known as aspirin, has been shown to promote osteogenic differentiation of mesenchymal stem cells. We investigated the effect of ASA pretreatment on periodontitis in order to achieve a more appealing prognosis of bone resorption. Methods. The effect of ASA on cell proliferation was detected by the CCK-8 assay, and alkaline phosphatase (ALP) staining, alizarin red staining (ARS), and western blot were used to investigate the effect of different ASA concentrations on hDPMSCs’ osteogenic differentiation and possible signaling pathways. Periodontitis was induced for 4 weeks. Stem cells pretreated with 50 µg/mL of ASA were transplanted into six-week-old male Sprague-Dawley rats by local and systemic injection once a week for two weeks. Four weeks after cell therapy, the rats were sacrificed for sampling to complete the molecular and morphological experiments. Results. In vitro experiments revealed that 50 µg/mL of ASA had a significant effect on cell osteogenic differentiation. That is, when ASA was administered, the MAPK signaling pathway was activated. Notably, further vivo experiments revealed that ASA-hDPMSCs increased the area of bone regeneration and the OPG/RANKL ratio, suppressed TNF-α and IL-1 expression, and promote alveolar bone repair. Conclusion. Our study extends the findings of previous research, firstly demonstrating that the use of ASA-pretreated hDPMSCs offers a novel therapy for the treatment of periodontitis for future clinical application.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.