{"title":"A Robust $$\\alpha $$-Stable Central Limit Theorem Under Sublinear Expectation without Integrability Condition","authors":"Lianzi Jiang, Gechun Liang","doi":"10.1007/s10959-023-01298-x","DOIUrl":null,"url":null,"abstract":"Abstract This article fills a gap in the literature by relaxing the integrability condition for the robust $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable central limit theorem under sublinear expectation. Specifically, for $$\\alpha \\in (0,1]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , we prove that the normalized sums of i.i.d. non-integrable random variables $$\\big \\{n^{-\\frac{1}{\\alpha }}\\sum _{i=1}^{n}Z_{i}\\big \\}_{n=1}^{\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>{</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>α</mml:mi> </mml:mfrac> </mml:mrow> </mml:msup> <mml:msubsup> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:msubsup> <mml:msub> <mml:mi>Z</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msubsup> <mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> </mml:mrow> </mml:math> converge in law to $${\\tilde{\\zeta }}_{1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mover> <mml:mi>ζ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mn>1</mml:mn> </mml:msub> </mml:math> , where $$({\\tilde{\\zeta }}_{t})_{t\\in [0,1]}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mover> <mml:mi>ζ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:msub> </mml:math> is a multidimensional nonlinear symmetric $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process with jump uncertainty set $${\\mathcal {L}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>L</mml:mi> </mml:math> . The limiting $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE): $$\\begin{aligned} \\left\\{ \\begin{array}{l} \\displaystyle \\partial _{t}u(t,x)-\\sup \\limits _{F_{\\mu }\\in {\\mathcal {L}}}\\left\\{ \\int _{{\\mathbb {R}}^{d}}\\delta _{\\lambda }^{\\alpha }u(t,x)F_{\\mu }(d\\lambda )\\right\\} =0,\\\\ \\displaystyle u(0,x)=\\phi (x),\\quad \\forall (t,x)\\in [0,1]\\times {\\mathbb {R}}^{d}, \\end{array} \\right. \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mstyle> <mml:mrow> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:munder> <mml:mo>sup</mml:mo> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo>∈</mml:mo> <mml:mi>L</mml:mi> </mml:mrow> </mml:munder> <mml:mfenced> <mml:msub> <mml:mo>∫</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:msub> <mml:msubsup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:mstyle> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mstyle> <mml:mrow> <mml:mrow /> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mo>∀</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:mstyle> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> where $$\\begin{aligned} \\delta _{\\lambda }^{\\alpha }u(t,x):=\\left\\{ \\begin{array}{ll} u(t,x+\\lambda )-u(t,x)-\\langle D_{x}u(t,x),\\lambda \\mathbbm {1}_{\\{|\\lambda |\\le 1\\}}\\rangle , &{}\\quad \\alpha =1,\\\\ u(t,x+\\lambda )-u(t,x), &{}\\quad \\alpha \\in (0,1). \\end{array} \\right. \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msubsup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:mo>⟨</mml:mo> <mml:msub> <mml:mi>D</mml:mi> <mml:mi>x</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>λ</mml:mi> <mml:msub> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>{</mml:mo> <mml:mo>|</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>|</mml:mo> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:msub> <mml:mo>⟩</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mi>u</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> <mml:mo>-</mml:mo> <mml:mi>u</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> The approach used in this study involves the utilization of several tools, including a weak convergence approach to obtain the limiting process, a Lévy–Khintchine representation of the nonlinear $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process and a truncation technique to estimate the corresponding $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable Lévy measures. In addition, the article presents a probabilistic method for proving the existence of a solution to the above fully nonlinear PIDE.","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"39 8","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10959-023-01298-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This article fills a gap in the literature by relaxing the integrability condition for the robust $$\alpha $$ α -stable central limit theorem under sublinear expectation. Specifically, for $$\alpha \in (0,1]$$ α∈(0,1] , we prove that the normalized sums of i.i.d. non-integrable random variables $$\big \{n^{-\frac{1}{\alpha }}\sum _{i=1}^{n}Z_{i}\big \}_{n=1}^{\infty }$$ {n-1α∑i=1nZi}n=1∞ converge in law to $${\tilde{\zeta }}_{1}$$ ζ~1 , where $$({\tilde{\zeta }}_{t})_{t\in [0,1]}$$ (ζ~t)t∈[0,1] is a multidimensional nonlinear symmetric $$\alpha $$ α -stable process with jump uncertainty set $${\mathcal {L}}$$ L . The limiting $$\alpha $$ α -stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE): $$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _{t}u(t,x)-\sup \limits _{F_{\mu }\in {\mathcal {L}}}\left\{ \int _{{\mathbb {R}}^{d}}\delta _{\lambda }^{\alpha }u(t,x)F_{\mu }(d\lambda )\right\} =0,\\ \displaystyle u(0,x)=\phi (x),\quad \forall (t,x)\in [0,1]\times {\mathbb {R}}^{d}, \end{array} \right. \end{aligned}$$ ∂tu(t,x)-supFμ∈L∫Rdδλαu(t,x)Fμ(dλ)=0,u(0,x)=ϕ(x),∀(t,x)∈[0,1]×Rd, where $$\begin{aligned} \delta _{\lambda }^{\alpha }u(t,x):=\left\{ \begin{array}{ll} u(t,x+\lambda )-u(t,x)-\langle D_{x}u(t,x),\lambda \mathbbm {1}_{\{|\lambda |\le 1\}}\rangle , &{}\quad \alpha =1,\\ u(t,x+\lambda )-u(t,x), &{}\quad \alpha \in (0,1). \end{array} \right. \end{aligned}$$ δλαu(t,x):=u(t,x+λ)-u(t,x)-⟨Dxu(t,x),λ1{|λ|≤1}⟩,α=1,u(t,x+λ)-u(t,x),α∈(0,1). The approach used in this study involves the utilization of several tools, including a weak convergence approach to obtain the limiting process, a Lévy–Khintchine representation of the nonlinear $$\alpha $$ α -stable process and a truncation technique to estimate the corresponding $$\alpha $$ α -stable Lévy measures. In addition, the article presents a probabilistic method for proving the existence of a solution to the above fully nonlinear PIDE.
期刊介绍:
Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.