A Robust $$\alpha $$-Stable Central Limit Theorem Under Sublinear Expectation without Integrability Condition

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Theoretical Probability Pub Date : 2023-11-03 DOI:10.1007/s10959-023-01298-x
Lianzi Jiang, Gechun Liang
{"title":"A Robust $$\\alpha $$-Stable Central Limit Theorem Under Sublinear Expectation without Integrability Condition","authors":"Lianzi Jiang, Gechun Liang","doi":"10.1007/s10959-023-01298-x","DOIUrl":null,"url":null,"abstract":"Abstract This article fills a gap in the literature by relaxing the integrability condition for the robust $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable central limit theorem under sublinear expectation. Specifically, for $$\\alpha \\in (0,1]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , we prove that the normalized sums of i.i.d. non-integrable random variables $$\\big \\{n^{-\\frac{1}{\\alpha }}\\sum _{i=1}^{n}Z_{i}\\big \\}_{n=1}^{\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>{</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>α</mml:mi> </mml:mfrac> </mml:mrow> </mml:msup> <mml:msubsup> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:msubsup> <mml:msub> <mml:mi>Z</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msubsup> <mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> </mml:mrow> </mml:math> converge in law to $${\\tilde{\\zeta }}_{1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mover> <mml:mi>ζ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mn>1</mml:mn> </mml:msub> </mml:math> , where $$({\\tilde{\\zeta }}_{t})_{t\\in [0,1]}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mover> <mml:mi>ζ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:msub> </mml:math> is a multidimensional nonlinear symmetric $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process with jump uncertainty set $${\\mathcal {L}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>L</mml:mi> </mml:math> . The limiting $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE): $$\\begin{aligned} \\left\\{ \\begin{array}{l} \\displaystyle \\partial _{t}u(t,x)-\\sup \\limits _{F_{\\mu }\\in {\\mathcal {L}}}\\left\\{ \\int _{{\\mathbb {R}}^{d}}\\delta _{\\lambda }^{\\alpha }u(t,x)F_{\\mu }(d\\lambda )\\right\\} =0,\\\\ \\displaystyle u(0,x)=\\phi (x),\\quad \\forall (t,x)\\in [0,1]\\times {\\mathbb {R}}^{d}, \\end{array} \\right. \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mstyle> <mml:mrow> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:munder> <mml:mo>sup</mml:mo> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo>∈</mml:mo> <mml:mi>L</mml:mi> </mml:mrow> </mml:munder> <mml:mfenced> <mml:msub> <mml:mo>∫</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:msub> <mml:msubsup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:mstyle> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mstyle> <mml:mrow> <mml:mrow /> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mo>∀</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:mstyle> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> where $$\\begin{aligned} \\delta _{\\lambda }^{\\alpha }u(t,x):=\\left\\{ \\begin{array}{ll} u(t,x+\\lambda )-u(t,x)-\\langle D_{x}u(t,x),\\lambda \\mathbbm {1}_{\\{|\\lambda |\\le 1\\}}\\rangle , &amp;{}\\quad \\alpha =1,\\\\ u(t,x+\\lambda )-u(t,x), &amp;{}\\quad \\alpha \\in (0,1). \\end{array} \\right. \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msubsup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:mo>⟨</mml:mo> <mml:msub> <mml:mi>D</mml:mi> <mml:mi>x</mml:mi> </mml:msub> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>λ</mml:mi> <mml:msub> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>{</mml:mo> <mml:mo>|</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>|</mml:mo> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:msub> <mml:mo>⟩</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mi>u</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> <mml:mo>-</mml:mo> <mml:mi>u</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mspace /> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> The approach used in this study involves the utilization of several tools, including a weak convergence approach to obtain the limiting process, a Lévy–Khintchine representation of the nonlinear $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process and a truncation technique to estimate the corresponding $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable Lévy measures. In addition, the article presents a probabilistic method for proving the existence of a solution to the above fully nonlinear PIDE.","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"39 8","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10959-023-01298-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article fills a gap in the literature by relaxing the integrability condition for the robust $$\alpha $$ α -stable central limit theorem under sublinear expectation. Specifically, for $$\alpha \in (0,1]$$ α ( 0 , 1 ] , we prove that the normalized sums of i.i.d. non-integrable random variables $$\big \{n^{-\frac{1}{\alpha }}\sum _{i=1}^{n}Z_{i}\big \}_{n=1}^{\infty }$$ { n - 1 α i = 1 n Z i } n = 1 converge in law to $${\tilde{\zeta }}_{1}$$ ζ ~ 1 , where $$({\tilde{\zeta }}_{t})_{t\in [0,1]}$$ ( ζ ~ t ) t [ 0 , 1 ] is a multidimensional nonlinear symmetric $$\alpha $$ α -stable process with jump uncertainty set $${\mathcal {L}}$$ L . The limiting $$\alpha $$ α -stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE): $$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _{t}u(t,x)-\sup \limits _{F_{\mu }\in {\mathcal {L}}}\left\{ \int _{{\mathbb {R}}^{d}}\delta _{\lambda }^{\alpha }u(t,x)F_{\mu }(d\lambda )\right\} =0,\\ \displaystyle u(0,x)=\phi (x),\quad \forall (t,x)\in [0,1]\times {\mathbb {R}}^{d}, \end{array} \right. \end{aligned}$$ t u ( t , x ) - sup F μ L R d δ λ α u ( t , x ) F μ ( d λ ) = 0 , u ( 0 , x ) = ϕ ( x ) , ( t , x ) [ 0 , 1 ] × R d , where $$\begin{aligned} \delta _{\lambda }^{\alpha }u(t,x):=\left\{ \begin{array}{ll} u(t,x+\lambda )-u(t,x)-\langle D_{x}u(t,x),\lambda \mathbbm {1}_{\{|\lambda |\le 1\}}\rangle , &{}\quad \alpha =1,\\ u(t,x+\lambda )-u(t,x), &{}\quad \alpha \in (0,1). \end{array} \right. \end{aligned}$$ δ λ α u ( t , x ) : = u ( t , x + λ ) - u ( t , x ) - D x u ( t , x ) , λ 1 { | λ | 1 } , α = 1 , u ( t , x + λ ) - u ( t , x ) , α ( 0 , 1 ) . The approach used in this study involves the utilization of several tools, including a weak convergence approach to obtain the limiting process, a Lévy–Khintchine representation of the nonlinear $$\alpha $$ α -stable process and a truncation technique to estimate the corresponding $$\alpha $$ α -stable Lévy measures. In addition, the article presents a probabilistic method for proving the existence of a solution to the above fully nonlinear PIDE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
次线性期望下无可积条件下的稳健$$\alpha $$ -稳定中心极限定理
摘要本文通过放宽次线性期望下稳健$$\alpha $$ α -稳定中心极限定理的可积性条件,填补了文献的空白。具体而言,对于$$\alpha \in (0,1]$$ α∈(0,1),证明了i.i.d不可积随机变量$$\big \{n^{-\frac{1}{\alpha }}\sum _{i=1}^{n}Z_{i}\big \}_{n=1}^{\infty }$$ n- 1 α∑i = 1 n zi n = 1{∞的归一化和规律收敛于}$${\tilde{\zeta }}_{1}$$ ζ 1,其中$$({\tilde{\zeta }}_{t})_{t\in [0,1]}$$ (ζ t) t∈[0,1]是一个具有跳跃不确定性集$${\mathcal {L}}$$ L的多维非线性对称$$\alpha $$ α稳定过程。极限$$\alpha $$ α稳定过程进一步表征为一个完全非线性的偏积分微分方程(PIDE): $$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _{t}u(t,x)-\sup \limits _{F_{\mu }\in {\mathcal {L}}}\left\{ \int _{{\mathbb {R}}^{d}}\delta _{\lambda }^{\alpha }u(t,x)F_{\mu }(d\lambda )\right\} =0,\\ \displaystyle u(0,x)=\phi (x),\quad \forall (t,x)\in [0,1]\times {\mathbb {R}}^{d}, \end{array} \right. \end{aligned}$$∂t u (t, x) - sup F μ∈L∫R d δ λ α u (t, x) F μ (d λ) = 0, u (0, x) = ϕ (x),∀(t, x)∈[0,1]× R d,其中$$\begin{aligned} \delta _{\lambda }^{\alpha }u(t,x):=\left\{ \begin{array}{ll} u(t,x+\lambda )-u(t,x)-\langle D_{x}u(t,x),\lambda \mathbbm {1}_{\{|\lambda |\le 1\}}\rangle , &{}\quad \alpha =1,\\ u(t,x+\lambda )-u(t,x), &{}\quad \alpha \in (0,1). \end{array} \right. \end{aligned}$$ δ λ α u (t, x):= u (t, x + λ) - u (t, x) -⟨dx u (t, x), λ 1 {| λ |≤1}⟩,α = 1, u (t, x + λ) - u (t, x), α∈(0,1)。本研究中使用的方法涉及到几种工具的利用,包括弱收敛方法来获得极限过程,非线性$$\alpha $$ α稳定过程的l - khintchine表示和截断技术来估计相应的$$\alpha $$ α稳定l测量。此外,本文还给出了证明上述全非线性PIDE解的存在性的概率方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
期刊最新文献
The Spine of Two-Particle Fleming-Viot Process in a Bounded Interval. Positive Reinforced Generalized Time-Dependent Pólya Urns via Stochastic Approximation Invariant Measures for Stochastic Reaction–Diffusion Problems on Unbounded Thin Domains Driven by Nonlinear Noise Urns with Multiple Drawings and Graph-Based Interaction Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1