Simulation Method for Rubber Compounding under Isothermal Partial Filling Conditions

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL Advances in Polymer Technology Pub Date : 2023-11-03 DOI:10.1155/2023/6062543
Guolin Wang, Jingshixiong Wang, Haichao Zhou, Chen Liang
{"title":"Simulation Method for Rubber Compounding under Isothermal Partial Filling Conditions","authors":"Guolin Wang, Jingshixiong Wang, Haichao Zhou, Chen Liang","doi":"10.1155/2023/6062543","DOIUrl":null,"url":null,"abstract":"Rubber mixing is an important link in the production of rubber products. Computational fluid dynamics (CFD) simulation is often used to explore the effect of rubber mixing parameters on rubber mixing effect. Previous CFD-based rubber mixing simulation studies did not consider the impact of using 2D or 3D numerical calculation models on the numerical simulation results. In order to investigate the differences between 2D and 3D numerical computational models in rubber compounding CFD simulation problems, in this paper, we compare and analyze the results obtained from 2D and 3D computational models under different rotational speed conditions to investigate the differences between the models in the numerical simulation of rubber compounding. Three different experimental speeds of the rubber mixer—39, 44, and 49 r/min—were set during the study using 2D and 3D asynchronous rotor models with a speed ratio of 1.15, respectively. The rubber was processed using the Bird–Carreau model. The phase interface between rubber and air was calculated using the volume of fluid (VOF) method. The numerical simulation results of different models show that the rotational speed set to 49 r/min shows the best dispersion distribution effect; the mixing effect and speed change rule obtained by the 2D model are consistent with the results obtained by the 3D model. The performance of the results of the two models is consistent when exploring the numerical simulation of rubber compounding.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"18 8","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6062543","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rubber mixing is an important link in the production of rubber products. Computational fluid dynamics (CFD) simulation is often used to explore the effect of rubber mixing parameters on rubber mixing effect. Previous CFD-based rubber mixing simulation studies did not consider the impact of using 2D or 3D numerical calculation models on the numerical simulation results. In order to investigate the differences between 2D and 3D numerical computational models in rubber compounding CFD simulation problems, in this paper, we compare and analyze the results obtained from 2D and 3D computational models under different rotational speed conditions to investigate the differences between the models in the numerical simulation of rubber compounding. Three different experimental speeds of the rubber mixer—39, 44, and 49 r/min—were set during the study using 2D and 3D asynchronous rotor models with a speed ratio of 1.15, respectively. The rubber was processed using the Bird–Carreau model. The phase interface between rubber and air was calculated using the volume of fluid (VOF) method. The numerical simulation results of different models show that the rotational speed set to 49 r/min shows the best dispersion distribution effect; the mixing effect and speed change rule obtained by the 2D model are consistent with the results obtained by the 3D model. The performance of the results of the two models is consistent when exploring the numerical simulation of rubber compounding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等温部分填充条件下橡胶复合的模拟方法
橡胶混炼是橡胶制品生产中的一个重要环节。计算流体力学(CFD)模拟常用于研究混炼参数对混炼效果的影响。以往基于cfd的橡胶混炼模拟研究没有考虑使用二维或三维数值计算模型对数值模拟结果的影响。为了研究二维和三维数值计算模型在橡胶混炼CFD模拟问题中的差异,本文对不同转速条件下二维和三维计算模型的结果进行了对比分析,探讨了两种模型在橡胶混炼数值模拟中的差异。研究中采用二维和三维异步转子模型,分别设置了39、44和49 r/min三种不同的实验转速,速比为1.15。使用Bird-Carreau模型对橡胶进行加工。采用流体体积法计算了橡胶与空气的相界面。不同模型的数值模拟结果表明,转速设置为49 r/min时,分散分布效果最佳;二维模型得到的混合效果和速度变化规律与三维模型得到的结果一致。在对橡胶配胶过程进行数值模拟时,两种模型的计算结果的性能是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
期刊最新文献
Utilizing Additive Manufacturing for Fabricating Energy Storage Components From Graphene-Reinforced Thermoplastic Composites Migration of Cosmetic Components Into Polyolefins Effect of Process Parameters and Material Selection on the Quality of 3D Printed Products by Fused Deposition Modeling (FDM): A Review Advances in Optimizing Mechanical Performance of 3D-Printed Polymer Composites: A Microstructural and Processing Enhancements Review Performance Study and Formulation Optimization of Rapid-Curing Local Insulating Spray Coating Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1