Semi-supervised Counting of Grape Berries in the Field Based on Density Mutual Exclusion

IF 7.6 1区 农林科学 Q1 AGRONOMY Plant Phenomics Pub Date : 2023-11-03 DOI:10.34133/plantphenomics.0115
Yanan Li, Yuling Tang, Yifei Liu, Dingrun Zheng
{"title":"Semi-supervised Counting of Grape Berries in the Field Based on Density Mutual Exclusion","authors":"Yanan Li, Yuling Tang, Yifei Liu, Dingrun Zheng","doi":"10.34133/plantphenomics.0115","DOIUrl":null,"url":null,"abstract":"Automated counting of grape berries has become one of the most important tasks in grape yield prediction. However, dense distribution of berries and the severe occlusion between berries bring great challenges to counting algorithm based on deep learning. The collection of data required for model training is also a tedious and expensive work. To address these issues and cost-effectively count grape berries, a semi-supervised counting of grape berries in the field based on density mutual exclusion (CDMENet) is proposed. The algorithm uses VGG16 as the backbone to extract image features. Auxiliary tasks based on density mutual exclusion are introduced. The tasks exploit the spatial distribution pattern of grape berries in density levels to make full use of unlabeled data. In addition, a density difference loss is designed. The feature representation is enhanced by amplifying the difference of features between different density levels. The experimental results on the field grape berry dataset show that CDMENet achieves less counting errors. Compared with the state of the arts, coefficient of determination (R2) is improved by 6.10%, and mean absolute error and root mean square error are reduced by 49.36% and 54.08%, respectively. The code is available at https://github.com/youth-tang/CDMENet-main.","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"44 2","pages":"0"},"PeriodicalIF":7.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0115","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Automated counting of grape berries has become one of the most important tasks in grape yield prediction. However, dense distribution of berries and the severe occlusion between berries bring great challenges to counting algorithm based on deep learning. The collection of data required for model training is also a tedious and expensive work. To address these issues and cost-effectively count grape berries, a semi-supervised counting of grape berries in the field based on density mutual exclusion (CDMENet) is proposed. The algorithm uses VGG16 as the backbone to extract image features. Auxiliary tasks based on density mutual exclusion are introduced. The tasks exploit the spatial distribution pattern of grape berries in density levels to make full use of unlabeled data. In addition, a density difference loss is designed. The feature representation is enhanced by amplifying the difference of features between different density levels. The experimental results on the field grape berry dataset show that CDMENet achieves less counting errors. Compared with the state of the arts, coefficient of determination (R2) is improved by 6.10%, and mean absolute error and root mean square error are reduced by 49.36% and 54.08%, respectively. The code is available at https://github.com/youth-tang/CDMENet-main.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于密度互斥的葡萄果实田间半监督计数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Phenomics
Plant Phenomics Multiple-
CiteScore
8.60
自引率
9.20%
发文量
26
审稿时长
14 weeks
期刊介绍: Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals. The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics. The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.
期刊最新文献
From Images to Loci: Applying 3D Deep Learning to Enable Multivariate and Multitemporal Digital Phenotyping and Mapping the Genetics Underlying Nitrogen Use Efficiency in Wheat. Informed-Learning-Guided Visual Question Answering Model of Crop Disease. Coupling PROSPECT with Prior Estimation of Leaf Structure to Improve the Retrieval of Leaf Nitrogen Content in Ginkgo from Bidirectional Reflectance Factor Spectra. A Field-to-Parameter Pipeline for Analyzing and Simulating Root System Architecture of Woody Perennials: Application to Grapevine Rootstocks. Estimating Leaf Nitrogen Accumulation Considering Vertical Heterogeneity Using Multiangular Unmanned Aerial Vehicle Remote Sensing in Wheat.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1